Skip to main content
Log in

Modeling the kinetics of consecutive phase transitions in the solid state

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A theoretical approach for describing the kinetics of consecutive phase transformations ruled by nucleation and growth is reported. In the considered system, the mother phase (M) transforms to an intermediate phase (α) which, in turn, transforms to the final product (β). The classical Kolmogorov–Johnson–Mehl–Avrami theory is generalized to deal with a finite-size phase with moving boundary. To this end, the statistical method based on the differential critical region has been employed. The exact solution of the kinetics is computed in closed form for the transformation of a spherical α-nucleus growing into the mother phase. By resorting to an approximate expression for the probability function entering the differential critical region method, the consecutive transformation is studied in the case of nucleation and growth of the α-phase. The time dependence of the β/α volume fraction is found to be in very good agreement with the stretched exponential kinetics, and the dependence of Avrami’s exponent on both nucleation and growth rates of the two phases is investigated. Modeling of the non-isothermal kinetics at constant heating rate has also been performed which provides an insight into the shape of the differential scanning calorimetry curves for consecutive phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For the case illustrated in Fig. 2a, the volume of the critical region is \( \varpi (t,t_{1} ,t^{\prime\prime}) = \int\limits_{{R_{\alpha } (t_{1} ) - R_{\alpha } (t^{\prime\prime})}}^{{R_{\beta } (t,t^{\prime\prime})}} {r^{2} {\text{d}}r\int\limits_{{\varDelta \varOmega (r;t_{1} ,t^{\prime\prime})}} {{\text{d}}\varOmega } } \) with \( \varDelta \varOmega (r;t_{1} ,t^{\prime\prime}) = 2\pi [R_{\alpha }^{2} (t^{\prime\prime}) - (r - R_{\alpha } (t_{1} ))^{2} ]/(2rR_{\alpha } (t_{1} )) \). The derivative of \( \varpi \) becomes \( \partial_{t} \varpi = R_{\beta }^{2} (t,t^{\prime\prime})\partial_{t} R_{\beta } (t,t^{\prime\prime})\int\limits_{{\varDelta \varOmega (R_{\beta } (t,t^{\prime\prime});t_{1} ,t^{\prime\prime})}} {{\text{d}}\varOmega } \), that is Eq. 4. Similar computation holds for the case considered in Fig. 2b.

  2. \( \varDelta h_{i,j} \) is considered independent of temperature.

  3. According to the definition given in Sect. 2.1, \( V_{\alpha } = V_{0} - V_{M} \) where \( V_{M} \) is the volume of the mother phase and \( V_{0} \) the total volume of the system. In addition, denoting with \( \tilde{V}_{\alpha } \) the volume of the α phase, the relation holds \( \tilde{V}_{\alpha } = V_{0} - V_{M} - V_{\beta } \), i.e., \( \frac{{\tilde{V}_{\alpha } }}{{V_{0} }} = \frac{{V_{\alpha } }}{{V_{0} }}\left( {1 - \frac{{V_{\beta } }}{{V_{\alpha } }}} \right) \).

References

  1. Cahn RW, Haasen P (1983) Physical metallurgy. part II. North Holland Physics Publishing, Amsterdam

    Google Scholar 

  2. Machlin ES (1991) Thermodynamics and kinetics relevant to materials Science. Giro Press, Croton-on-Hudson

    Google Scholar 

  3. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis; part A:the ICTAC kinetic project-data, methods and results. Thermochim Acta 355:125–143

    Article  Google Scholar 

  4. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetic Committee recommendations for performing kinetic computationa on thermal analysis data. Thermochim Acta 520:1–19

    Article  Google Scholar 

  5. Clavaguera-Mora MT, Clavaguera N, Crespo D, Pradell T (2002) Crystallization kinetics and microstructure development in metallic systems. Prog Mater Sci 47:559–619

    Article  Google Scholar 

  6. Zhao B, Li L, Lu F, Zhai Q, Yang B, Schick C, Gao Y (2015) Phase transitions and nucleation mechanism in metals studied by nanocalorimetry: a review. Thermochim Acta 603:2–23

    Article  Google Scholar 

  7. Schmalzried H (1974) Solid state reactions. Academic Press, New York

    Google Scholar 

  8. Kolmogorov AN (1937) On the statistical theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat 3:355–359

    Google Scholar 

  9. Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:1103–1112

    Article  Google Scholar 

  10. Avrami M (1940) Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  11. Avrami M (1941) Granulation, Phase Change and Microstructure. Kinetics of phase change III. J. Chem. Phys. 9:177–184

    Article  Google Scholar 

  12. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng 135:416–458

    Google Scholar 

  13. Fanfoni M, Tomellini M (2005) Film growth viewed as stochastic dot processes. J Phys 17:R571–R605

    Google Scholar 

  14. Rios PR, Oliveira JCPT, Oliveira VT, Castro JA (2006) Microstucture descriptors and cellular automata simulation of the effect of non-random nuclei location on recrystallization in two dimensions. Mater Res 9:165–170

    Google Scholar 

  15. Uebele P, Hermann H (1996) Computer simulation of crystallization kinteics with non-Poisson distributed nuclei. Model Simul Mater Sci Eng 4:203–214

    Article  Google Scholar 

  16. Alekseechkin NV (2001) On the theory of phase transformations with position-dependent nucleation rate. J Phys 13:3083–3110

    Google Scholar 

  17. Tomellini M (2010) On the kinetics of nucleation and growth in inhomogeneous systems. J Mater Sci 45:733–743. doi:10.1007/s10853-009-3992-8

    Article  Google Scholar 

  18. Shepilov MP (2004) Kinetics of transformation for model with diffusion law of growth of new-phase particles nucleated on active centers. Glass Phys Chem 30:291–299

    Article  Google Scholar 

  19. Tomellini M, Fanfoni M (2012) Beyond the constraint underlying Kolmogorov-Johnson-Mehl-Avrami model related to the growth law. Phys Rev E 85:021606

    Article  Google Scholar 

  20. Alekseechkin NV (2011) Extension of the Kolmogorov-Johnson-Mehl-Avrami theory to growth law of diffusion type. J Non Cryst. Solids 357:3159–3167

    Article  Google Scholar 

  21. Birnie DP, Weinberg MC (1995) Kinetics of transformation for anisotropic particles including shielding effect. J Chem Phys 103:3742–3746

    Article  Google Scholar 

  22. Weinberg MC, Birnie DP (1996) Avrami exponents for transformations producing anisotropic particles. J Non Cryst Solids 202:290–296

    Article  Google Scholar 

  23. Pusztai T, Gránásy L (1998) Monte Carlo simulation of first-order phase transformations with mutual blocking of anisotropically growing particle up to all relevant order. Phys Rev B 57:14110–14118

    Article  Google Scholar 

  24. Kooi BJ (2004) Monte Carlo simulation of phase transformations caused by nucleation and subsequent anisotropic growth: extension of the Kolmogorov-Johnson-Mehl-Avrami theory. Phys Rev B 70:224108

    Article  Google Scholar 

  25. Burbelko AA, Fraś E, Kapturkiewicz W (2005) About Kolmogorov’s statistical theory of phase transformation. Mater Sci Eng A 413–414:429–434

    Article  Google Scholar 

  26. Levine LE, Lakshmi Narayan K, Kelton KF (1997) Finite size corrections for the Johnson-Mehl-Avrami-Kolmogorov equation. J Mater Res 12:124–132

    Article  Google Scholar 

  27. Korobov A (2007) Kolmogorov-Johnson-Mehl-Avrami kinetics in different metrics. Phys Rev B 76:085430

    Article  Google Scholar 

  28. Alekseechkin NV (2008) On the kinetics of phase transformation of small particles in Kolmogorov’s model. Condens Matter Phys 11:597–613

    Article  Google Scholar 

  29. Cahn JW (1996) The time cone method for nucleation and growth kinetics on a finite domain. In: Proceedings of the Thermodynamics and Kinetics of Phase Transformations Symposium. Materials Research Society, Boston, MA, 27 Nov–1 December 1995, pp 425–437

  30. Alekseechkin NV (2009) On calculating volume fractions of competing phases. J Phys 12:9109–9122

    Google Scholar 

  31. Shanmugavelu B, Kumar VVRK (2012) Crystallization kinetics and phase transformation in bismuth zinc borate glass. J Am Ceram Soc 95:2891–2898

    Article  Google Scholar 

  32. Beg S, Al-Areqi NAS, Al-Alas A, Hafeez S (2009) Influence of dopant concentration on phase transition and ionic conductivity in BIHFVOX system. Phys B 404:2072–2079

    Article  Google Scholar 

  33. Farjas J, Roura P (2006) Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater 54:5573–5579

    Article  Google Scholar 

  34. Blagojević VA, Vasić M, Minić DM, Minić DM (2012) Kinetics and thermodynamics of thermally induced structural transformations of amorphous Fe75Ni2Si8B13C2. Themochim Acta 549:35–41

    Article  Google Scholar 

  35. Zuzjaková Š, Zeman P, Kos Š (2013) Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure. Thermochim Acta 572:85–93

    Article  Google Scholar 

  36. Zeman P, Zuzjaková Š, Blažek J, Čerstvy R (2014) Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering. Surf Coat Technol 240:7–13

    Article  Google Scholar 

  37. Edlmayr V, Moser M, Walter C, Mitterer C (2010) Thermal stability of sputtered Al2O3 coating. Surf Coat Technol 204:1576–1581

    Article  Google Scholar 

  38. Jacot A, Sumida M, Kurz W (2011) Solute trapping-free massive transformation at absolute stability. Acta Mater 59:1716–1724

    Article  Google Scholar 

  39. Zuzjaková Š, Zeman P, Houška J, Čerstvý R, Musil J (2015) Thermal stability and transformation phenomena in magnetron sputtered Al-Cu-O films. Ceram Int 41:6020–6029

    Article  Google Scholar 

  40. Polini R, Palmieri E, Marcheselli G (2015) Nanostructured tungsten carbide synthesis by carbothermic reduction of scheelite: a comprhensive study. Int J Refract Met Hard Mater 51:289–300

    Article  Google Scholar 

  41. Kashchiev D (1977) Growth kinetics of dislocation free interfaces and growth mode of thin films. J Cryst Growth 40:29–46; see also Vetter K (1967) Electrokhimicheskaya Kinetica. Khimiya Moskow 350 (in Russian)

  42. Tomellini M, Fanfoni M (2014) Comparative study of approaches based on the differential critical region and correlation functions in modeling phase transformation kinetics. Phys Rev E 90:052406

    Article  Google Scholar 

  43. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52:193–212

    Article  Google Scholar 

  44. Starink MJ (2004) Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev 49:191–226

    Article  Google Scholar 

  45. Tomellini M (2013) Functional form of the Kolmogorov-Johnson-Mehl-Avrami kinetics for non-isothermal phase transformations at constant heating rate. Thermochim Acta 566:249–256

    Article  Google Scholar 

  46. Blázquez JS, Borrego JM, Conde CF, Conde A, Lozano-Pérez S (2012) Extension of the classical theory of crystallization to non-isothermal regimes: application to nanocrystallization processes. J Alloys Compd 544:73–81

    Article  Google Scholar 

  47. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of iso-conversion method. Thermochim Acta 404:163–176

    Article  Google Scholar 

  48. Farjas J, Roura P (2011) Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim 105:757–766

    Article  Google Scholar 

  49. Farjas J, Roura P (2011) Isoconversional analysis of solid state transformations. A critical review. Part II. Complex transformations. J Therm Anal Calorim 105:767–773

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted with Dr. R. Polini for the valuable discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tomellini.

Appendices

Appendix 1

In this Appendix, the computation of the volume of the critical region, ϖ(tt 1t″), is reported. According to Fig. 2, the following cases are considered:

Case (i) 0 < t″ < t 1 < t < t f

For R α (t″) + R β (tt″) < R α (t 1), the volume of the critical region is nil, ϖ = 0. For linear growth, this inequality implies,

$$ 0 < (1 - \rho )t^{\prime\prime} < t_{1} - \rho t , $$
(24)

where \( \rho = \frac{{v_{\beta } }}{{v_{\alpha } }} < 1 \). Therefore, for \( \, \rho < \, \frac{{t_{1} }}{t} < 1 { } \) one defines the time \( T_{1} = \frac{{t_{1} - \rho t}}{1 - \rho } \) and Eq. 24 provides

(a) \( \, \rho < \, \frac{{t_{1} }}{t} < 1 { } \)

$$ \varpi = 0 \, \leftrightarrow \, t'' < T_{1} < t_{1} $$
(25)
$$ \varpi = \omega (t,t_{1} ,t'') \, \leftrightarrow \, T_{1} < t'' < t_{1} $$
(26)

where ω(tt 1t″) = ω[R α (t″), R β (tt″); R α (t 1)], with ω[r 1r 2z] overlap volume of two spheres of radii r 1 and r 2 located at relative distance z.

For R β (tt″) > R α (t 1) + R α (t″), the volume of the critical region is equal to ϖ(t″) = υ α (t″) and its derivative, in Eq. 7, is nil. This condition implies

$$ (1 + \rho )t'' < \rho t - t_{1} . $$
(27)

For \( \, \frac{{t_{1} }}{t} < \rho \, \) one defines the time \( T_{0} = \frac{{\rho t - t_{1} }}{1 + \rho } \). Accordingly, for \( \frac{\rho }{2 + \rho } < \frac{{t_{1} }}{t} < \rho, \) the inequalities 0 < T 0 < t 1 hold and the volume of the critical region becomes

b) \( \frac{\rho }{2 + \rho } < \frac{{t_{1} }}{t} < \rho \)

$$ \varpi = \upsilon_{\alpha } (t'') \leftrightarrow \, t'' < T_{0} < t_{1} $$
(28)
$$ \varpi = \omega (t,t_{1} ,t'') \, \leftrightarrow \, T_{0} < t'' < t_{1} . $$
(29)

On the other hand, when \( \frac{{t_{1} }}{t} \) is lower than \( \frac{\rho }{2 + \rho }, \) the volume of the critical region is

c) \( 0 < \frac{{t_{1} }}{t} < \frac{\rho }{2 + \rho } \)

$$ \varpi = \upsilon_{\alpha } \left( {t^{\prime\prime}} \right) \leftrightarrow t^{\prime\prime} < t_{ 1} $$

Case (ii) 0 < t 1 < t″ < t < t f

In this case, the volume of the critical region is always different from zero (Fig. 2).

For R α (t″) > R α (t 1) + R β (tt″), the volume of the critical region is equal to ϖ(tt″) = υ β (t − t″). This inequality implies (1 + ρ)t″ > ρt + t 1, namely \( t'' > T_{2} = \frac{{t_{1} + \rho t}}{1 + \rho } \), where t 1 < T 2 < t. Furthermore, for R β (tt″) > R α (t 1) + R α (t″), the volume of the critical region is equal to ϖ(t″) = υ α (t″) and the derivative in Eq. 7 is nil. This condition leads to the inequality Eq. 27, (1 + ρ)t″ < ρt - t 1 and, as above, for \( \, \frac{{t_{1} }}{t} < \rho \, \) the time \( T_{0} = \frac{{\rho t - t_{1} }}{1 + \rho } \) is defined. Consequently, for 0 < t″ < T 0, the volume of the critical region is ϖ(t″) = υ α (t″). Also, for \( 0 < \frac{{t_{1} }}{t} < \frac{\rho }{2 + \rho } \), t 1 < T 0 < T 2 < t, while, for \( \frac{\rho }{2 + \rho } < \frac{{t_{1} }}{t} < 1 \), it follows that T 0 < t 1. All these conditions are summarized according to

a) \( 0 < \frac{{t_{1} }}{t} < \frac{\rho }{2 + \rho } \)

$$ \varpi = \upsilon_{\alpha } (t'') \, \leftrightarrow \, t_{1} < t'' < T_{0} $$
$$ \varpi = \omega (t,t_{1} ,t'') \, \leftrightarrow \, T_{0} < \, t'' < T_{2} $$
$$ \varpi = \upsilon_{\beta } (t - t'') \, \leftrightarrow \, T_{2} < \, t'' < t $$

b) \( \frac{\rho }{2 + \rho } < \frac{{t_{1} }}{t} < 1 \)

$$ \varpi = \omega (t,t_{1} ,t'') \, \leftrightarrow \, t_{1} < \, t'' < T_{2} $$
$$ \varpi = \upsilon_{\beta } (t - t^{\prime\prime} ) \leftrightarrow T_{ 2} < t^{\prime\prime} < t. $$

A graphical representation of the results here obtained for both cases (i) and (ii) is reported in Fig. 3.

Appendix 2

The overlap volume of two spheres of radii r 1 and r 2 whose centers are located at relative distance z is

$$ \omega (r_{1} ,r_{2} ;z) = \pi \left[ {\frac{2}{3}(r_{1}^{3} + r_{2}^{3} ) + \frac{1}{12}z^{3} - \frac{1}{2}z(r_{1}^{2} + r_{2}^{2} ) - \frac{1}{4z}[(r_{1}^{2} - r_{2}^{2} )^{2} ]} \right] , $$
(30)

which is further computed for r 1 ≡ R α (t″), r 2 ≡ R β (tt″) and z ≡ R α (t 1). The derivative of Eq. 30 eventually gives

$$ \partial_{t} \omega (t,t_{1} ,t^{\prime\prime}) = \pi \left[ {2v_{\beta }^{3} (t - t^{\prime\prime})^{2} - v_{\beta }^{2} v_{\alpha } t_{1} (t - t^{\prime\prime}) + \frac{{v_{\beta }^{2} }}{{v_{\alpha } t_{1} }}(t - t^{\prime\prime})[v_{\alpha }^{2} t^{{\prime\prime}2} - v_{\beta }^{2} (t - t^{\prime\prime})^{2} ]} \right] $$
(31)

that is Eq. 11b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomellini, M. Modeling the kinetics of consecutive phase transitions in the solid state. J Mater Sci 51, 809–821 (2016). https://doi.org/10.1007/s10853-015-9404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9404-3

Keywords

Navigation