Skip to main content
Log in

Role of nucleation in the development of first-order phase transformations

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Hypotheses on how first-order phase transitions develop which deny a fundamental element of the classical thermal fluctuation theory, namely, that the nucleation of a new phase must take place when the crystal lattice changes, are considered. It is shown that the thermal fluctuation theory does not work for polymorphic transformations in pure metals, which are accompanied by lattice rearrangement in a macrovolume (over the entire volume of a sample under study) without substance transfer. However, the classical thermal fluctuation theory of new phase nucleation is valid in describing the supersaturated solid solution decomposition in the case where the main pattern of the crystal lattice of the matrix is retained, and a new phase, which differs from the parent one in both crystal structure and chemical composition, precipitates in separate microvolumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian, J.W., Theory of Transformations in Metals and Alloys. Part 1, Amsterdam: Pergamon, 2002. Moscow: Mir, 1978.

    Google Scholar 

  2. Umanskii, Ya.S. and Skakov, Yu.A., Fizika metallov. Atomnoe stroenie metallov i splavov (Uchebnik dlya vuzov) (Physics of Metals. Atomic Structure of Metals and Alloys (A Handbook for Institute of Higher Education), Moscow: Atomizdat, 1978.

    Google Scholar 

  3. Vintaikin, E.Z. and Udovenko, V.A., Premartensite instability in manganese-copper alloy, Fiz. Met. Metalloved., 1977, vol. 44, pp. 1081–1083.

    Google Scholar 

  4. Zakharov, A.I., Electron nature of phase transformations of martensite type, Metal Sci. Heat Treat., 2002, vol. 44, pp. 179–184.

    Article  CAS  Google Scholar 

  5. Pushin, V.G. and Kondrat’ev, V.V., Pretransition phenomena and martensitic transformations, Fiz. Met. Metalloved., 1994, vol. 78, pp. 40–61.

    CAS  Google Scholar 

  6. Popova, E.E. and Spektor, E.N., Peculiarities of metastable structure formation in alloys of manganese-copper system, Metalloved. Term. Obrab. Met., 1985, no. 4, pp. 39–41.

    Google Scholar 

  7. Bokshtein, B.S., Voitkovskii, Yu.B., Nikol’skii, G.S., and Razumovskii, I.M., Study of the Debye-Waller factor near the temperature of a phase transition of the first kind in cobalt, J. Exper. Theor. Phys., 1973, vol. 37, pp. 283–284.

    Google Scholar 

  8. Kraposhkin, V.S., Talis, A.L., and Van Yanjin, W., Geometrical model of polymorphous transformations in titanium and zirconium, Metal Sci. Heat Treat., 2005, vol. 44, pp. 402–410.

    Article  Google Scholar 

  9. Demin, S.A., Peculiarities of premartensitic effects in manganese-copper system, Fiz. Met. Metalloved., 1989, vol. 67, pp. 775–781.

    CAS  Google Scholar 

  10. Balagurov, A.M., Barkalov, O.I., Kolesnikov, A.I., Mironova G. M., Ponyatovskii E.G., Sinitsyn V.V., and Fedotov V.K., Neutron-diffraction study of phase transitions of high-pressure metastable ice VIII, JETP Lett., 1991, vol. 53, pp. 30–34.

    CAS  Google Scholar 

  11. Novikov, I.I., Special states of metallic crystals, Russ. Metall. (Metally), 1997, no. 1, pp. 48–52.

    Google Scholar 

  12. Bazin, Yu.A., Role of nearer order in melting processes and poymorph transformations of metals, Metally, 1997, no. 2, pp. 34–37.

    Google Scholar 

  13. Drapkin, B.M., Kononenko, V.K., and Bez”yazychnyi, V.F., Svoistva splavov v ekstremal’nom sostoyanii (Properties of Alloys in Extreme State), Moscow: Mashinostroenie, 2004.

    Google Scholar 

  14. Garber, R.I. and Kharinova, Zh.F., Analiticheskie vozmozhnosti metoda vnutrennego treniya (Analytical Possibilities of Internal Friction Method), Moscow: Nauka, 1973.

    Google Scholar 

  15. Bokshtein, B.S., Bokshtein, S.Z., Klinger, L.M., and Razumovskii, I.M., Issledovanie nestabil’nosti reshetki metallicheskikh splavov v predmartensitnom sostoyanii (Study of Metallic Alloy Lattice Instability in Premartensite State), Moscow: Metallurgiya, 1974.

    Google Scholar 

  16. Somenkov, V.A., Gladkov, V.P., and Blanter, M.S., Thermal vibrations and a–ß transformation in lanthanum, Phys. Met. Metallogr., 2006, vol. 101, pp. 159–164.

    Article  Google Scholar 

  17. Rokhmanov, N.Ya. and Sirenko, A.F., Anomalies of internal friction in vicinity of Curie point of carbide phase in iron-carbon system, Fiz. Met. Metalloved., 1991, no. 7, pp. 193–197.

    Google Scholar 

  18. Drapkin, B.M. and Fokin, B.V., On Young modulus of cementite, Fiz. Met. Metalloved., 1980, vol. 49, pp. 649–651.

    CAS  Google Scholar 

  19. Novikov, I.I., Phase transformations in crystal bodies (Contemporary state of problem), Inzh.-Fiz. Zh., 1980, vol. 39, pp. 1118–1132.

    CAS  Google Scholar 

  20. Mirzaev, D.A., Iron polymorphism reasons, Fiz. Met. Metalloved., 1992, vol. 44, pp. 559–561.

    Google Scholar 

  21. Gaev, I.S. and Sheyanova, E.V., Polymorphism and its influence on iron properties, Metalloved. Term. Obrab. Met., 1998, no. 1, pp. 58–64.

    Google Scholar 

  22. Gulyaev, A.P., The state of preliminary transformation in iron alloys, Metalloved. Term. Obrab. Met., 1991, no. 6, pp. 7–10.

    Google Scholar 

  23. Blanter, M.E. and Mashkov, A.K., Anomalous changes of alloy properties in the process of phase transformations, Metalloved. Term. Obrab. Met., 1959, no. 1, pp. 6–10.

    Google Scholar 

  24. Estrin, E.I., On the nature of plasticity upon polymorphic transformations, Phys. Met. Metalogr., 2006, vol. 102, pp. 114–119.

    Article  Google Scholar 

  25. Vorob’ev, V.G., Anomalous properties of metallic substances during internal transformations and their technical significance, Izv. Vyssh. Ucheb. Zav., Mashinost., 1960, no. 8, pp. 120–131.

    Google Scholar 

  26. Svoistva elementov. Sprav. izd. v 2-kh kn. Kn. 1 (Properties of Elements. A Handbook. In 2 vols. Vol. 1) Drits, M.E., Ed., Moscow: Metallurgiya, 1997.

  27. Svoistva elementov. Sprav. izd. v 2-kh kn. Kn. 2 (Properties of Elements. A Handbook. In 2 vols. Vol. 2) Drits, M.E., Ed., Moscow: Ruda i metally, 2003.

  28. Arzamasov, B.N., Krasheninnikov, A.I., Pastukhova, Zh.P., and Rakhshtadt, A.G., Nauchnye osnovy materialovedeniya (Scientific Foundations of Material Science), Moscow: Mos. Gos. Tekhn. Univ. im. N.E. Baumana, 1994.

    Google Scholar 

  29. Bulat, S.N., Tikhonov, A.S., and Dubrovin, A.K., Deformiruemost’ strukturno neodnorodnykh metallov i splavov (Deformability of Structurally Heterogeneous Metals and Alloys), Moscow: Metallurgiya, 1975.

    Google Scholar 

  30. Karyakin, N.V. and Fedoseev, V.B., Free energy of a solid solution with solute clusters, Phys. Met. Metallogr., 2001, vol. 91, pp. 126–129.

    Google Scholar 

  31. Kuzovleva, O.V., Tikhonova, I.V., and Gvozdev, A.E., On State of Preliminary Transformation of Metals and Alloys: Methodology and Results of Experimental and Theoretical Studies and Practical Developments, FGUT NTTs “Informregistr,” Depozit. Elektron. Izd. Registr. Svidet., no. 17583.

  32. Kolachev, B.A., Elagin, V.I., and Livanov, V.A., Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov. 3-e izd. pererab. i dop. (Metal Science and Heat Treatment of Non-Ferrous Metals), Moscow: MISIS, 1999, 3rd ed.

    Google Scholar 

  33. Osintsev, O.E. and Fedorov, V.I., Med’ i mednye splavy. Otechestvennye i zarubezhnye marki: Spravochnik (Copper and Copper Alloys. Native and Foreign Marks. A Handbook), Moscow: Mashinostroenie, 2004.

    Google Scholar 

  34. Tikhonova, I.V., Gvozdev, A.E., Starikov, N.E., and Kharlamova, E.S., Razrabotka metodicheskikh podkhodov dlya kolichestvennogo opisaniya osobennostei strukturoobrazovaniya i izmeneniya prochnostnykh svoistv pri raspade peresyshchennogo tverdogo rastvora (Development of Methodical Approaches for Quantitative Description of Structure Formation Description and Strengthening Property Change at Oversaturated Solid Solution Decomposition) Tula: TAII, 2007.

    Google Scholar 

  35. Gol’dshtein, M.N., Grachev, S.V., and Veksler, Yu.G., Spetsial’nye stali. Uchebnik dlya vuzov (Special Steels. A Tutorial for Institute of Higher Education), Moscow: Metallurgiya, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gvozdev.

Additional information

Original Russian Text © A.E. Gvozdev, N.N. Sergeyev, I.V. Minayev, I.V. Tikhonova, A.G. Kolmakov, 2015, published in Materialovedenie, 2015, No. 1, pp. 15–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, A.E., Sergeyev, N.N., Minayev, I.V. et al. Role of nucleation in the development of first-order phase transformations. Inorg. Mater. Appl. Res. 6, 283–288 (2015). https://doi.org/10.1134/S2075113315040103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315040103

Keywords

Navigation