Skip to main content
Log in

A comparative study on the influence of 150 MeV Ni7+, 120 MeV Ag9+, and 110 MeV Au8+ swift heavy ions on the structural and thermoluminescence properties of Y2O3: Eu3+/Tb3+ nanophosphor for dosimetric applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a comparative study on the structural and thermoluminescence (TL) properties of Y2O3: Eu3+/Tb3+ nanophosphor is investigated under the influence of 150 MeV Ni7+, 120 MeV Ag9+, and 110 MeV Au8+ swift heavy ions (SHI) within the fluence range of 1 × 1011 to 1 × 1013 ions/cm2. With the increase in SHI irradiation, the crystallinity deteriorated owing to grain fragmentation for the SHI fluence, which was confirmed via the Hall–Williamsons relation. The loss of crystallinity of the nanophosphor after SHI irradiation was higher in the case of the Au8+ ion irradiation. Transmission electron microscopy confirmed that the SHI irradiation separated the agglomerated particles into irregularly shaped particles with reduced particle size. Infrared spectroscopy revealed Y–O stretching and C–O bending bonds. The reduction in Y–O vibration in the SHI-irradiated phosphor indicated the loss of crystallinity, and confirmed the formation of new defect centers. SRIM calculations, performed to correlate the changes in TL properties of Y2O3: Eu3+/Tb3+ nanophosphor, showed that 110 MeV Au8+ ions created higher concentration of defects. Present nanophosphor possessed good TL response toward γ-ray as well as different SHI irradiations. The TL glow curves of the virgin and SHI-irradiated nanophosphor showed increase in TL intensity as a function of ion fluence. Trapping parameters of the different SHI-irradiated nanophosphors were calculated from the TL data using various glow curve analysis methods. The obtained results indicated that the present phosphor can be used successfully in heavy ions dosimetry for space craft and air crew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shionoya S, Yen WM, Yamamoto H (2006) Phosphor handbook. CRC Press, Boca Raton

    Google Scholar 

  2. Clarke DK, Suresh S, Ward IM (1996) Ion-solid interactions: fundamentals and applications. University Press, Cambridge

    Google Scholar 

  3. Mishra GC, Upadhyay AK, Kher RS, Dhoble SJ (2011) Thermoluminescence and lyoluminescence in γ-ray irradiated and Ce3+-doped YCa4O(BO3)3 phosphors. J Mater Sci 46:7275–7278. doi:10.1007/s10853-011-5687-1

    Article  Google Scholar 

  4. Miyoshi T, Ushigusa K, Migita K, Tamechika M, Tokuda N, Kaneda T (2008) Thermoluminescence and induced absorption in X-ray-irradiated CdS-doped glasses. J Mater Sci 43:203–206. doi:10.1007/s10853-007-2141-5

    Article  Google Scholar 

  5. Bedyal AK, Kumar V, Bedyal AK, Sharma V, Singh F, Lochab SP, Ntwaeaborwa OM, Swart HC (2014) Swift heavy ion induced structural, optical and luminescence modification in NaSrBO3:Dy3+ phosphor. J Mater Sci 49:6404–6412. doi:10.1007/s10853-014-8367-0

    Article  Google Scholar 

  6. Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M (2008) Radiation damage formation in InP, InSb, GaAs, GaP, Ge, and Si due to fast ions. Phys Rev B 78:054111–054112

    Article  Google Scholar 

  7. Wesch W, Kamarou A, Wendler E (2004) Effect of high electronic energy deposition in semiconductors. Nucl Instrum Methods B 225:111–128

    Article  Google Scholar 

  8. Vij A, Kumar R, Chawla AK, Lochab SP, Chandra R, Singh N (2010) Swift heavy ion induced synthesis and enhanced photoluminescence of SrS: Ce nanoparticles. Opt Mater 33:58–62

    Article  Google Scholar 

  9. Kanagasekaran T, Mythili P, Srinivasan P, Vijayan N, Kanjilal D, Gopalakrishnan R, Ramasamy P (2008) On the observation of physical, chemical, optical and thermal changes induced by 50 MeV silicon ion in benzimidazole single crystals. Mater Res Bull 43:852–863

    Article  Google Scholar 

  10. Fleischer RL, Price PB, Walker RM, Hubbard EL (1967) Criterion for registration in dielectric track detectors. Phys Rev 156:353–355

    Article  Google Scholar 

  11. Toulemonde M, Dufour C, Paumier E (1992) Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys Rev B 46:14362–14369

    Article  Google Scholar 

  12. Szenes G, Horvath ZE, Pecz B, Paszti F, Toth L (2002) Tracks induced by swift heavy ions in semiconductors. Phys Rev B 65:04520601–04520605

    Article  Google Scholar 

  13. Kumar V, Swart HC, Ntwaeaborwa OM, Kumar R, Lochab SP, Mishra V, Singh N (2009) Thermoluminescence response of CaS:Bi3+ nanophosphor exposed to 200 MeV Ag+15 ion beam. Opt Mater 32:164–168

    Article  Google Scholar 

  14. Manjunatha C, Sunitha DV, Nagabhushana H, Singh F, Sharma SC, Chakradhar RPS, Nagabhushana BM (2013) Thermoluminescence properties of 100 MeV Si7+ swift heavy ions and UV irradiated CdSiO3:Ce3+ nanophosphor. J Lumin 134:358–368

    Article  Google Scholar 

  15. Som S, Sharma SK (2012) Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J Phys D 45:415102(1-11)

    Article  Google Scholar 

  16. Reddy AA, Das S, Goel A, Sen R, Siege R, Mafra L, Prakash GV, Ferreira JMF (2013) KCa4(BO3)3:Ln3+ (Ln=Dy, Eu, Tb) phosphors for near UV excited white–light–emitting diodes. AIP Adv 3:022126

    Article  Google Scholar 

  17. Som S, Chowdhury M, Sharma SK (2014) Band gap and trapping parameters of color tunable Yb3+/Er3+ codoped Y2O3 upconversion phosphor synthesized by combustion route. J Mater Sci 49:858–867. doi:10.1007/s10853-013-7769-8

    Article  Google Scholar 

  18. Vij A, Lochab SP, Kumar R, Singh N (2010) Thermoluminescence response and trap parameters determination of gamma exposed Ce doped SrS nanostructures. J Alloy Compd 490:L33–L36

    Article  Google Scholar 

  19. Vij A, Lochab SP, Singh S, Kumar R, Singh N (2009) Thermoluminescence study of UV irradiated Ce doped SrS nanostructures. J Alloy Compd 486:554–558

    Article  Google Scholar 

  20. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  21. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Springer, New York

    Book  Google Scholar 

  22. Mishra YK, Kaps S, Schuchardt A, Paulowicz I, Jin X, Gedamu D, Freitag S, Claus M, Wille S, Kovalev A, Gorb SN, Adelung R (2013) Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part Part Syst Charact 30:775–783

    Article  Google Scholar 

  23. Jin X, Strueben J, Heepe L, Kovalev A, Mishra YK, Adelung R, Gorb SN, Staubitz A (2012) Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv Mater 24:5676–5680

    Article  Google Scholar 

  24. Jin X, Götz M, Wille S, Mishra YK, Adelung R, Zollfrank C (2013) A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25:1342–1347

    Article  Google Scholar 

  25. Som S, Sharma SK, Shripathi T (2013) Influences of doping and annealing on the structural and photoluminescence properties of Y2O3 nanophosphors. J. Fluoresc 23:439–450

    Article  Google Scholar 

  26. Som S, Sharma SK, Lochab SP (2013) Swift heavy ion induced structural and optical properties of Y2O3:Eu3+ nanophosphor. Mater Res Bull 48:844–851

    Article  Google Scholar 

  27. Ziegler JF (1984–2006) Stopping and range of ions in matter. http://www.srim.org/

  28. Som S, Sharma SK, Lochab SP (2013) Morphology, ion impact, and kinetic parameters of swift heavy-ion-induced Y2O3: Dy3+ phosphor. Phys Status Solidi A 210:1624–1635

    Article  Google Scholar 

  29. Manam J, Das S (2010) Characterization and TSL dosimetric properties of Mn doped BaSO4 phosphor prepared by recrystallisation method. J Alloys Compd 489:84–90

    Article  Google Scholar 

  30. Nagabhushana H, Nagabhushana BM, Premkumar HB, Lakshminarasappa BN, Singh F, Chakradhar RPS (2009) Raman and infrared study of 100 MeV swift Ag8+ heavy ion irradiation effects in CaSO4·2H2O single crystals. J Alloy Compd 482:308–312

    Article  Google Scholar 

  31. Horowitz YS, Rosenkrantz M, Mahajna S, Yossian D (1996) The track interaction model for alpha particle induced thermoluminescence supralinearity: dependence of the supralinearity on the vector properties of the alpha particle radiation field. J Phys D Appl Phys 29:205–217

    Article  Google Scholar 

  32. Chung KS, Choe HS, Lee JI, Kim JL (2007) A new method for the numerical analysis of thermoluminescence glow curve. Radiat Meas 42:731–734

    Article  Google Scholar 

  33. Chung KS, Choe HS, Lee JI, Kim JL, Chang SY (2005) A computer program for the deconvolution of thermoluminescence glow curves. Radiat Prot Dosimetry 115(1–4):343–349

    Article  Google Scholar 

  34. Hasan F, Kitis G, Charalambous S (1985) The Thermoluminescence Behavior of CaSO4-Dy (Tld~900) for doses up to 30 Mrad. Nucl Instrum Methods Phys Res Sect B 9:218–222

    Article  Google Scholar 

  35. Furetta C (2003) Handbook of thermoluminescence, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  36. Chen R, McKeever SWS (1997) Theory of thermoluminescence and related phenomena. World Scientific, Singapore

    Book  Google Scholar 

  37. Mishra YK, Avasthi DK, Kulriya PK, Singh F, Kabiraj D, Tripathi A, Pivin JC, Bayer IS, Biswas A (2007) Controlled growth of gold nanoparticles induced by ion irradiation: an in situ x-ray diffraction study. Appl Phys Lett 90:073110

    Article  Google Scholar 

  38. Mishra YK, Singh F, Avasthi DK, Pivin JC, Malinovska D, Pippel E (2007) Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation. Appl Phys Lett 91:063103

    Article  Google Scholar 

  39. Avasthi DK, Mishra YK, Singh F, Stoquert JP (2010) Ion tracks in silica for engineering the embedded nanoparticles. Nucl Instr Meth Phys Res B 268:3027–3034

    Article  Google Scholar 

  40. Mishra YK, Kabiraj D, Avasthi DK, Pivin JC (2007) Swift heavy ion-induced dissolution of gold nanoparticles in silica matrix. Radiat Eff Defects Solids 162:207–213

    Article  Google Scholar 

  41. Lang M, Zhang F, Li W, Severin D, Bender M, Klaumünzer S, Trautmann C, Ewing RC (2012) Swift heavy ion-induced amorphization of CaZrO3 perovskite. Nucl Instr Meth Phys Res B 286:271–276

    Article  Google Scholar 

  42. Lang M, Zhang F, Zhang J, Tracy CL, Cusick AB, VonEhr J, Chen Z, Trautmann C, Ewing RC (2014) Swift heavy ion-induced phase transformation in Gd2O3. Nucl Instr Meth Phys Res B 326:121–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Das or S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Som, S., Das, S., Dutta, S. et al. A comparative study on the influence of 150 MeV Ni7+, 120 MeV Ag9+, and 110 MeV Au8+ swift heavy ions on the structural and thermoluminescence properties of Y2O3: Eu3+/Tb3+ nanophosphor for dosimetric applications. J Mater Sci 51, 1278–1291 (2016). https://doi.org/10.1007/s10853-015-9376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9376-3

Keywords

Navigation