Skip to main content
Log in

An evaluation of the saturation hardness in an ultrafine-grained aluminum 7075 alloy processed using different techniques

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A commercial Al-7075 alloy was processed by the severe plastic deformation (SPD) procedures of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) and by a combination of these two techniques. The results show samples processed by a combination of ECAP and HPT have smaller grain sizes and higher saturation hardnesses than samples processed separately by ECAP or HPT. Microstructural observations reveal grain refinement after each SPD technique, and the minimum grain size was ~200 nm after processing by a combination of ECAP for eight passes and HPT for 20 turns. It is demonstrated that the saturation hardness is dependent upon the microstructure of the sample introduced in any processing step prior to the HPT processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  3. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753

    Article  Google Scholar 

  4. Petch NJ (1953) Cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  5. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  6. Valiev RZ, Zhilyaev AP, Langdon TG (2014) Bulk nanostructured materials: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  7. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  8. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  9. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The process of grain refinement in equal-channel angular pressing. Acta Mater 46:3317–3331

    Article  Google Scholar 

  10. Komura S, Horita Z, Nemoto M, Langdon TG (1999) Influence of stacking fault energy on microstructural development in equal-channel angular pressing. J Mater Res 14:4044–4050

    Article  Google Scholar 

  11. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater 52:4589–4599

    Article  Google Scholar 

  12. Kawasaki M, Horita Z, Langdon TG (2009) Microstructural evolution in high purity aluminum processed by ECAP. Mater Sci Eng A524:143–150

    Article  Google Scholar 

  13. Xu J, Shirooyeh M, Wongsa-Ngam J, Shan D, Guo B, Langdon TG (2013) Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing. Mater Sci Eng A586:108–114

    Article  Google Scholar 

  14. Xu C, Horita Z, Langdon TG (2008) The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater 56:5168–5176

    Article  Google Scholar 

  15. Duan ZC, Liao XZ, Kawasaki M, Figueiredo RB, Langdon TG (2010) Influence of high-pressure torsion on microstructural evolution in an Al–Zn–Mg–Cu alloy. J Mater Sci 45:4621–4630. doi:10.1007/s10853-010-4400-0

    Article  Google Scholar 

  16. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Achieving homogeneity in a Cu-Zr alloy processed by high-pressure torsion. J Mater Sci 47:7782–7788. doi:10.1007/s10853-012-6587-8

    Article  Google Scholar 

  17. Torbati-Sarraf SA, Langdon TG (2014) Properties of a ZK60 magnesium alloy processed by high-pressure torsion. J Alloys Compd 613:357–363

    Article  Google Scholar 

  18. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scr Mater 46:575–580

    Article  Google Scholar 

  19. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  20. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  21. Zhilyaev AP, Gubicza J, Nurislamova G, Revesz A, Surinach S, Baro MD, Ungar T (2003) Microstructural characterization of ultrafine-grained nickel. Phys Status Solidi A198:263–271

    Article  Google Scholar 

  22. Sato YS, Kurihara Y, Park SHC, Kokawa H, Tsuji N (2004) Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding. Scr Mater 50:57–60

    Article  Google Scholar 

  23. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng A477:366–371

    Article  Google Scholar 

  24. Wongsa-Ngam J, Wen H, Langdon TG (2013) Microstructural evolution in a Cu–Zr alloy processed by a combination of ECAP and HPT. Mater Sci Eng A579:126–135

    Article  Google Scholar 

  25. Zhilyaev AP, Baró MD, Langdon TG, McNelley TR (2004) An examination of microtexture and microstructure in ultrafine-grained nickel. Rev Adv Mater Sci 7:41–49

    Google Scholar 

  26. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) A two step SPD processing of ultrafine-grained titanium. Nanostruct Mater 11:947–954

    Article  Google Scholar 

  27. Xu C, Furukawa M, Horita Z, Langdon TG (2005) The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP. Mater Sci Eng A398:66–76

    Article  Google Scholar 

  28. Xu C, Xia K, Langdon TG (2007) The role of back pressure in the processing of pure aluminum by equal-channel angular pressing. Acta Mater 55:2351–2360

    Article  Google Scholar 

  29. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) The development of hardness homogeneity in a Cu–Zr alloy processed by equal-channel angular pressing. Mater Sci Eng A556:526–532

    Article  Google Scholar 

  30. Prell M, Xu C, Langdon TG (2008) The evolution of homogeneity on longitudinal sections during processing by ECAP. Mater Sci Eng A480:449–455

    Article  Google Scholar 

  31. Veveçka A, Cabibbo M, Langdon TG (2013) A characterization of microstructure and microhardness on longitudinal planes of an Al-Mg-Si alloy processed by ECAP. Mater Charact 84:126–133

    Article  Google Scholar 

  32. Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212

    Article  Google Scholar 

  33. Kawasaki M, Figueiredo RB, Langdon TG (2011) An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater 59:308–316

    Article  Google Scholar 

  34. Kawasaki M, Alhajeri SN, Xu C, Langdon TG (2011) The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. Mater Sci Eng A529:345–351

    Article  Google Scholar 

  35. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  36. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater Sci Eng A387–389:809–816

    Article  Google Scholar 

  37. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) Strain gradient modeling of high-pressure torsion. J Mech Phys Solids 56:1186–1202

    Article  Google Scholar 

  38. Pippan R, Wetscher F, Hafok M, Vorhauer A, Sabirov I (2006) The limits of refinement by severe plastic deformation. Adv Eng Mater 8:1046–1056

    Article  Google Scholar 

  39. Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Saturation of fragmentation during severe plastic deformation. Ann Rev Mater Res 40:319–343

    Article  Google Scholar 

  40. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans 31A:691–701

    Article  Google Scholar 

  41. Figueiredo RB, Cetlin PR, Langdon TG (2007) The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater 55:4769–4779

    Article  Google Scholar 

  42. Kim WJ, Kim JK, Kim HK, Park JW, Jeong YH (2008) Effect of post-equal-channel-angular pressing aging on the modified 7075 alloy containing Sc. J Alloys Compd 450:222–228

    Article  Google Scholar 

  43. Turba K, Málek P, Rauch EF, Robaut F, Cieslar M (2009) The optimization of ECAP conditions to achieve high strain-rate superplasticity in a Zr- and Sc-modified AA 7075 aluminum alloy. Int J Mater Res 100:851–857

    Article  Google Scholar 

  44. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultrafine-grained materials. Scr Mater 35:143–146

    Article  Google Scholar 

  45. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A257:328–332

    Article  Google Scholar 

  46. Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Optimizing the rotation conditions for grain refinement in equal-channel angular pressing. Metall Mater Trans 29A:2011–2013

    Article  Google Scholar 

  47. Xu C, Horita Z, Langdon TG (2010) Microstructural evolution in pure aluminum in early stages of processing by high-pressure torsion. Mater Trans 51:2–7

    Article  Google Scholar 

  48. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A528:8198–8204

    Article  Google Scholar 

  49. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  50. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng A498:341–348

    Article  Google Scholar 

  51. Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Influence of pressing speed on microstructural development in equal-channel angular pressing. Metall Mater Trans A 30A:1989–1997

    Article  Google Scholar 

  52. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J Mater Sci 47:7789–7795. doi:10.1007/s10853-012-6524-x

    Article  Google Scholar 

  53. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng A596:52–58

    Article  Google Scholar 

  54. Sabbaghianrad S, Langdon TG (2014) An investigation of mechanical properties and microstructural evolution in an aluminum alloy processed by severe plastic deformation. Adv Mater Res 922:610–615

    Article  Google Scholar 

  55. Mackenzie JK, Thomson MJ (1957) Some statistics associated with the random disorientation of cubes. Biometrika 44:205–210

    Article  Google Scholar 

  56. Mackenzie JK (1958) Second paper on statistics associated with the random disorientation of cubes. Biometrika 45:229–240

    Article  Google Scholar 

  57. Tóth LS, Beausir B, Gu CF, Estrin Y, Scheerbaum N, Davies CHJ (2010) Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution. Acta Mater 58:6706–6716

    Article  Google Scholar 

  58. Toth LS, Gu C (2014) Ultrafine-grain metals by severe plastic deformation. Mater Charact 92:1–14

    Article  Google Scholar 

  59. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scr Mater 51:921–925

    Article  Google Scholar 

  60. Edalati K, Fujioka T, Horita Z (2009) Evolution of mechanical properties and microstructures with equivalent strain in pure Fe processed by high pressure torsion. Mater Trans 50:44–50

    Article  Google Scholar 

  61. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater Sci Eng A527:4864–4869

    Article  Google Scholar 

  62. Edalati K, Horita Z (2010) Universal plot for hardness variation in pure metals. Mater Trans 51:1051–1054

    Article  Google Scholar 

  63. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  64. Shahmir H, Nili-Ahmadabadi M, Huang Y, Langdon TG (2014) Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion. J Mater Sci 49:2998–3009. doi:10.1007/s10853-013-7985-2

    Article  Google Scholar 

  65. Sharman K, Bazarnik P, Brynk T, Bulutsuz AG, Lewandowska M, Huang Y, Langdon TG (2015) Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion. J Mater Res Technol 4:79–83

    Article  Google Scholar 

  66. Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A528:3601–3608

    Article  Google Scholar 

  67. Mohamed FA, Dheda SS (2012) On the minimum grain size attainable by high-pressure torsion. Mater Sci Eng A558:59–63

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbaghianrad, S., Langdon, T.G. An evaluation of the saturation hardness in an ultrafine-grained aluminum 7075 alloy processed using different techniques. J Mater Sci 50, 4357–4365 (2015). https://doi.org/10.1007/s10853-015-8989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8989-x

Keywords

Navigation