Skip to main content

Advertisement

Log in

Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Processing by high-pressure torsion (HPT) was performed on disks of an Al-7075 alloy at room temperature. The alloy was initially annealed at 753 K and then processed by HPT under a pressure of 6.0 GPa up to a maximum of ten turns. Measurements of the Vickers microhardness showed lower values at the centers of the disks after small numbers of turns but higher numbers of turns led to a reasonable hardness homogeneity across each disk. After five turns, the grain size at the edge of the disk was ~250 nm. It is demonstrated that results from mechanical testing are consistent with the hardness and microstructural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Bridgman PW (1943) J Appl Phys 14:273

    Article  Google Scholar 

  5. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  6. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A391:377

    CAS  Google Scholar 

  7. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  8. Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Mater Sci Eng A500:170

    CAS  Google Scholar 

  9. Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715

    Google Scholar 

  10. Kawasaki M, Alhajeri SN, Xu C, Langdon TG (2011) Mater Sci Eng A529:345

    Google Scholar 

  11. Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans 31A:691

    Article  CAS  Google Scholar 

  12. Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Proc Tech 117:288

    Article  CAS  Google Scholar 

  13. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589

    Article  CAS  Google Scholar 

  14. Zhao YH, Liao XZ, Zhu YT, Valiev RZ (2005) J Mater Res 20:288

    Article  CAS  Google Scholar 

  15. Wang SC, Starink MJ, Gao N, Qiao XG, Xu C, Langdon TG (2008) Acta Mater 56:3800

    Article  CAS  Google Scholar 

  16. Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG (2009) Acta Mater 57:3123

    Article  CAS  Google Scholar 

  17. Sha G, Ringer SP, Duan ZC, Langdon TG (2009) Int J Mater Res 100:1674

    Article  CAS  Google Scholar 

  18. Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG (2010) Mater Sci Eng A527:4742

    CAS  Google Scholar 

  19. Duan ZC, Chinh NQ, Xu C, Langdon TG (2010) Metall Mater Trans 41A:802

    Article  CAS  Google Scholar 

  20. Sha G, Yao L, Liao XZ, Ringer SP, Duan ZC, Langdon TG (2011) Ultramicroscopy 111:500

    Article  CAS  Google Scholar 

  21. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  22. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945

    Article  CAS  Google Scholar 

  23. Kumar SR, Gudimetla K, Venkatachalam P, Ravisankar B, Jayasankar K (2012) Mater Sci Eng A533:50

    Google Scholar 

  24. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  25. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705

    Article  CAS  Google Scholar 

  26. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809

    Google Scholar 

  27. Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) Metal Mater Trans 37A:1963

    Article  CAS  Google Scholar 

  28. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  29. Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Mater Sci Forum 584–586:16

    Article  Google Scholar 

  30. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198

    Google Scholar 

  31. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  32. Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809

    Article  CAS  Google Scholar 

  33. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A477:366

    CAS  Google Scholar 

  34. Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi:10.1007/s10853-008-2624-z

    Article  CAS  Google Scholar 

  35. Xu C, Langdon TG (2009) Mater Sci Eng A503:71

    CAS  Google Scholar 

  36. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Int J Mater Res 100:1668

    Article  CAS  Google Scholar 

  37. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919

    Article  CAS  Google Scholar 

  38. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Mater Sci Eng A527:4864

    CAS  Google Scholar 

  39. Edalati K, Horita Z (2010) J Mater Sci 45:4578. doi:10.1007/s10853-010-4381-z

    Article  CAS  Google Scholar 

  40. Duan ZC, Liao XZ, Kawasaki M, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4621. doi:10.1007/s10853-010-4400-0

    Article  CAS  Google Scholar 

  41. Čížek J, Janeček M, Srba O, Kužel R, Barnovská Z, Procházka I, Dobatkin S (2011) Acta Mater 59:2322

    Article  Google Scholar 

  42. Kawasaki M, Figueiredo R, Langdon TG (2011) Acta Mater 59:308

    Article  CAS  Google Scholar 

  43. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Sabbaghianrad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbaghianrad, S., Kawasaki, M. & Langdon, T.G. Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J Mater Sci 47, 7789–7795 (2012). https://doi.org/10.1007/s10853-012-6524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6524-x

Keywords

Navigation