Skip to main content
Log in

Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

2524-T3 aluminum alloy sheets with different grain sizes (13 μm, 59 μm, 178 μm, 355 μm, 126 μm, and 87 μm) were prepared using methods such as rolling and annealing. The microstructures and mechanical properties of the 2524-T3 aluminum alloy sheets were studied using optical microscopy (OM), scanning electron microscopy (SEM), and tensile and fatigue crack growth (FCG) rate tests. The grain size had a significant effect on the fatigue crack growth (FCG) rate. Alloys with grain sizes between 50 and 100 μm exhibited high fatigue crack propagation resistances and the lowest FCG rates (da/dN = 1.05−1.45 × 10−3 mm/cycle at gAK = 30 MPa m1/2). Microstructural observations revealed that fatigue cracks propagated more tortuously in the alloy with grain sizes within the range of 50–100 μm. This result is attributed to the combined effects of grain boundaries, crack deflection, fracture surface roughness-induced crack closure, and plasticity-induced crack closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems, Acta Materialia 51 (2003) 5775–5799.

    Article  Google Scholar 

  2. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials and Design 56 (2014) 862–871.

    Article  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering A 280 (2000) 102–107.

    Article  Google Scholar 

  4. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, et al., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A 280 (2000) 37–49.

    Article  Google Scholar 

  5. T.S. Srivatsan, D. Kolar, P. Magnusen, Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524, Materials Science and Engineering A 314 (2001) 118–130.

    Google Scholar 

  6. S. Bai, Z. Liu, Y. Gu, X. Zhou, S. Zeng, Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with a low Cu/Mg ratio, Materials Science and Engineering A 530 (2011) 473–480.

    Article  Google Scholar 

  7. Z. Mingzhe, Y. Danqing, L. Huiqun, L. Wenjun, Z. Feng, Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging under influence of electrical field, Materials Science and Engineering A 527 (2010) 4070–4075.

    Article  Google Scholar 

  8. L. Yanbin, L. Zhiyi, L. Yuntao, X. Qinkun, Z. Jie, Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging, Materials Science and Engineering A 492 (2008) 333–336.

    Article  Google Scholar 

  9. L.P. Maduro, C.A.R.P. Baptista, M.A.S. Torres, R.C. Souza, Modeling the growth of LT and TL-oriented fatigue cracks in longitudinally and transversely pre-strained Al 2524-T3 alloy, Procedia Engineering 10 (2011) 1214–1219.

    Article  Google Scholar 

  10. Z.Q. Zheng, B. Cai, T. Zhai, S.C. Li, The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy, Materials Science and Engineering A 528 (2011) 2017–2022.

    Article  Google Scholar 

  11. P.J. Golden, A.F. Grandt Jr., G.H. Bray, A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens, International Journal of Fatigue 21 (1999) S211–S219.

    Article  Google Scholar 

  12. Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, Y.F. Xu, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Materials Science and Engineering A 580 (2013) 150–158.

    Article  Google Scholar 

  13. T.S. Srivatsan, D. Kolar, P. Magnusen, The cyclic fatigue and final fracture behavior of aluminum alloy 2524, Materials and Design 23 (2002) 129–139.

    Article  Google Scholar 

  14. ZY. Liu, F.D. Li, P. Xia, S. Bai, Y.X. Gu, D. Yu, et al., Mechanisms for goss-grains induced crack deflection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy, Materials Science and Engineering A 625 (2015) 271–277.

    Article  Google Scholar 

  15. J. Andersson, The influence of grain size variation on metal fatigue, International Journal of Fatigue 27 (2005) 847–852.

    Article  Google Scholar 

  16. N. Kamp, N. Gao, M. Starink, I. Sinclair, Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys, International Journal of Fatigue 29 (2007) 869–878.

    Article  Google Scholar 

  17. N. Kamp, N. Gao, M.J. Starink, M.R. Parry, I. Sinclair, Analytical modelling of the influence of local mixed mode displacements on roughness induced crack closure, International Journal of Fatigue 29 (2007) 897–908.

    Article  Google Scholar 

  18. T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scripta Materialia 49 (2003) 675–680.

    Article  Google Scholar 

  19. P. Ma, L. Qian, J. Meng, S. Liu, F. Zhang, Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel, Materials Science and Engineering A 605 (2014) 160–166.

    Article  Google Scholar 

  20. P.S. Pao, H.N. Jones, S.F. Cheng, C.R. Feng, Fatigue crack propagation in ultrafine grained Al-Mg alloy, International Journal of Fatigue 27 (2005) 1164–1169.

    Article  Google Scholar 

  21. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, 1995.

    Google Scholar 

  22. L. Eschbach, P.J. Uggowitzer, M.O. Speidel, Effect of recrystallisation and grain size on the mechanical properties of spray formed AlCuMgAg-alloys, Materials Science and Engineering A 248 (1998) 1–8.

    Article  Google Scholar 

  23. J.J. Nah, H.G Kang, M.Y. Huh, O. Engler, Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy, Scripta Materialia 58 (2008) 500–503.

    Article  Google Scholar 

  24. J.H. Kim, S.B. Lee, Behavior of plasticity-induced crack closure and roughness-induced crack closure in aluminum alloy, International Journal of Fatigue 23 (Suppl.) (2001) 247–251.

    Article  Google Scholar 

  25. C.S. Lee, C.G. Park, Y.W. Chang, Precise determination of fatigue crack closure in Al alloys, Materials Science and Engineering A 216 (1996) 131–138.

    Article  Google Scholar 

  26. R.O. Ritchie, S. Suresh, Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology, Metallurgical Transactions A 13 (1982) 937–940.

    Article  Google Scholar 

  27. G.R. Irwin, Linear fracture mechanics, fracture transition, and fracture control, Engineering Fracture Mechanics 1 (1968) 241–257.

    Article  Google Scholar 

  28. Y. Lin, X. Liu, S. Li, Z. Zeng, A multi-scale Al-Mg alloy containing ultra-fine lamellar structure, Materials Science and Engineering A 636 (2015) 207–215.

    Article  Google Scholar 

  29. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li, The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy, Materials Science and Engineering A 494 (2008) 397–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shou, W.B., Yi, D.Q., Liu, H.Q. et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Archiv.Civ.Mech.Eng 16, 304–312 (2016). https://doi.org/10.1016/j.acme.2016.01.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2016.01.004

Keywords

Navigation