Skip to main content
Log in

Methanol sensing micro-gas sensors of SnO2–ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SnO2–ZnO composite nanofibers have been fabricated on Si/SiO2/Ti/Pt substrates by a novel method named as “stepwise-heating electrospinning” in this paper. The Si/SiO2/Ti/Pt substrates were fabricated by typical MEMS technology including some technological processes of thermal oxidation, photolithography, sputtering, and lift-off. Comparing with normal ceramic tube sensor fabrication process, spin coating or grinding was not needed during the sensors fabrication using silicon planar technology, which avoided destroying the original morphologies of nanomaterials. The ZnO-modified SnO2 shows good sensing properties to methanol due to the presence of N–N heterojunction at the interface of ZnO and SnO2 grains. The efficient charge separation of SnO2–ZnO heterojunction in the gas sensing performance was discussed from the perspective of energy band and formation of electronic accumulation layer as well as depletion layer. A detailed description of the change of band bending and potential barrier height of SnO2–ZnO composite nanofibers was also given, as well as a specific sensing mechanism in the process of methanol adsorption and desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kong Y, Yu D, Zhang B, Fang W, Feng S (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407–409. doi:10.1063/1.1342050

    Article  Google Scholar 

  2. Wrasse EO, Torres A, Baierle RJ, Fazzio A, Schmidt TM (2014) Size-effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires. Phys Chem Chem Phys 16:8114–8118. doi:10.1039/c3cp55233k

    Article  Google Scholar 

  3. Sharma SK, Saurakhiya N, Barthwal S, Kumar R, Sharma A (2014) Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications. Nanoscale Res Lett 9:122. doi:10.1186/1556-276X-9-122

    Article  Google Scholar 

  4. Hill LJ, Richey NE, Sung Y, Dirlam PT, Griebel JJ, Lavoie-Higgins E, Shim IB, Pinna N, Willinger MG, Vogel W, Benkoski JJ, Char K, Pyun J (2014) Colloidal polymers from dipolar assembly of cobalt-tipped CdSe@CdS nanorods. ACS Nano 8:3272–3284. doi:10.1021/nn406104d

    Article  Google Scholar 

  5. Nasir ME, Dickson W, Wurtz GA, Wardley WP, Zayats AV (2014) Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv Mater 26:3532–3537. doi:10.1002/adma.201305958

    Article  Google Scholar 

  6. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673. doi:10.1021/nl050082v

    Article  Google Scholar 

  7. van Berlo D, Wilhelmi V, Boots AW, Hullmann M, Kuhlbusch TA, Bast A, Schins RP, Albrecht C (2014) Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88:1725–1737. doi:10.1007/s00204-014-1220-z

    Article  Google Scholar 

  8. Zhang Q, Geng A, Zhang H, Hu F, Lu ZH, Sun D, Wei X, Ma C (2014) An independent 1D single-walled metal-organic nanotube transformed from a 2D layer exhibits highly selective and reversible sensing of nitroaromatic compounds. Chemistry 20:4885–4890. doi:10.1002/chem.201304784

    Article  Google Scholar 

  9. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/chin.200322236

    Article  Google Scholar 

  10. Lieber CM (1998) One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun 107:607–616. doi:10.1016/S0038-1098(98)00209-9

    Article  Google Scholar 

  11. Li Y, Xu J, Chao J, Chen D, Ouyang S, Ye J, Shen G (2011) High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J Mater Chem 21:12852–12857. doi:10.1039/c1jm11356a

    Article  Google Scholar 

  12. Choi S-W, Park JY, Kim SS (2009) Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 20:465603. doi:10.1088/0957-4484/20/46/465603

    Article  Google Scholar 

  13. Song X, Wang Z, Liu Y, Wang C, Li L (2009) A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers. Nanotechnology 20:075501. doi:10.1088/0957-4484/20/7/075501

    Article  Google Scholar 

  14. Wan Q, Li Q, Chen Y, Wang T-H, He X, Li J, Lin C (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656. doi:10.1063/1.1738932

    Article  Google Scholar 

  15. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420:57–61. doi:10.1038/nature01141

    Article  Google Scholar 

  16. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho K (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351. doi:10.1021/nl034010k

    Article  Google Scholar 

  17. Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuators B 137:471–475. doi:10.1016/j.snb.2008.11.042

    Article  Google Scholar 

  18. Xu J, Chen Y, Shen J (2008) Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater Lett 62:1363–1365. doi:10.1016/j.matlet.2007.08.054

    Article  Google Scholar 

  19. Xu J, Chen Y, Pan Q, Xiang Q, Cheng Z, Dong X (2007) A new route for preparing corundum-type In2O3 nanorods used as gas-sensing materials. Nanotechnology 18:115615. doi:10.1088/0957-4484/18/11/115615

    Article  Google Scholar 

  20. Theron A, Zussman E, Yarin A (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12:384. doi:10.1088/0957-4484/12/3/329

    Article  Google Scholar 

  21. Cai Y, Li Q, Wei Q, Wu Y, Song L, Hu Y (2008) Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning. J Mater Sci 43:6132–6138. doi:10.1007/s10853-008-2921-6

    Article  Google Scholar 

  22. Li X-Y, Wang J-N, Zhang L-L, Li C-J (2012) Photocatalytic activity of magnetically separable La-doped TiO2/CoFe2O4 nanofibers prepared by two-spinneret electrospinning. J Mater Sci 47:465–472. doi:10.1007/s10853-011-5821-0

    Article  Google Scholar 

  23. Park J-Y, Hwang K-J, Lee J-W, Lee I-H (2011) Fabrication and characterization of electrospun Ag doped TiO2 nanofibers for photocatalytic reaction. J Mater Sci 46:7240–7246. doi:10.1007/s10853-011-5683-5

    Article  Google Scholar 

  24. Forleo A, Francioso L, Capone S, Casino F, Siciliano P, Tan OK, Hui H (2011) Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sens Actuators B 154:283–287. doi:10.1016/j.snb.2010.01.010

    Article  Google Scholar 

  25. He X, Li J, Gao X, Wang L (2003) NO2 sensing characteristics of WO3 thin film microgas sensor. Sens Actuators B 93:463–467. doi:10.1016/S0925-4005(03)00205-3

    Article  Google Scholar 

  26. Nguyen H, Quy CT, Hoa ND, Lam NT, Duy NV, Quang VV, Hieu NV (2014) Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sens Actuators B 193:888–894. doi:10.1016/j.snb.2013.11.043

    Article  Google Scholar 

  27. Hoa ND, Van Quy N, Kim D (2009) Nanowire structured SnOx–SWNT composites: high performance sensor for NOx detection. Sens Actuators B 142:253–259. doi:10.1016/j.snb.2009.07.053

    Article  Google Scholar 

  28. Thong LV, Hoa ND, Le DTT, Viet DT, Tam PD, Le A-T, Hieu NV (2010) On-chip fabrication of SnO2-nanowire gas sensor: the effect of growth time on sensor performance. Sens Actuators B 146:361–367. doi:10.1016/j.snb.2010.02.054

    Article  Google Scholar 

  29. Xu X, Fan H, Liu Y, Wang L, Zhang T (2011) Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption. Sens Actuators B 160:713–719. doi:10.1016/j.snb.2011.08.053

    Article  Google Scholar 

  30. Li L, Tong Z, Zhi-Jun W, Shou-Chun L, Yun-Xia T, Wei L (2009) High performance micro-structure sensor based on TiO2 nanofibers for ethanol detection. Chin Phys Lett 26:090701. doi:10.1088/0256-307X/26/9/090701

    Article  Google Scholar 

  31. Kühne S, Graf M, Tricoli A, Mayer F, Pratsinis S, Hierlemann A (2008) Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors. J Micromech Microeng 18:035040. doi:10.1088/0960-1317/18/3/035040

    Article  Google Scholar 

  32. Liu L, Zhang T, Li S, Wang L, Tian Y (2009) Micro-structure sensors based on ZnO microcrystals with contact-controlled ethanol sensing. Chin Sci Bull 54:4371–4375. doi:10.1007/s11434-009-0662-9

    Article  Google Scholar 

  33. Huang H, Lim CK, Tse MS, Guo J, Tan OK (2012) SnO2 nanorod arrays: low temperature growth, surface modification and field emission properties. Nanoscale 4:1491–1496. doi:10.1039/c1nr10710k

    Article  Google Scholar 

  34. Tang W, Wang J, Yao P, Li X (2014) Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens Actuators B 192:543–549. doi:10.1016/j.snb.2013.11.003

    Article  Google Scholar 

  35. Loría-Bastarrachea M, Herrera-Kao W, Cauich-Rodríguez J, Cervantes-Uc J, Vázquez-Torres H, Ávila-Ortega A (2011) A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J Therm Anal Calorim 104:737–742. doi:10.1007/s10973-010-1061-9

    Article  Google Scholar 

  36. Tang W, Wang J, Yao P, Li X (2014) A microscale formaldehyde gas sensor based on Zn2SnO4/SnO2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment. J Mater Sci 49:1246–1255. doi:10.1007/s10853-013-7808-5

    Article  Google Scholar 

  37. Choi S-W, Katoch A, Zhang J, Kim SS (2013) Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens Actuators B 176:585–591. doi:10.1016/j.snb.2012.09.035

    Article  Google Scholar 

  38. Park J-A, Moon J, Lee S-J, Kim SH, Chu HY, Zyung T (2010) SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sens Actuators B 145:592–595. doi:10.1016/j.snb.2009.11.023

    Article  Google Scholar 

  39. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703. doi:10.1002/chin.200742269

    Article  Google Scholar 

  40. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160. doi:10.1016/0304-3886(95)00041-8

    Article  Google Scholar 

  41. Takata M, Tsubone D, Yanagida H (1976) Dependence of electrical conductivity of ZnO on degree of sintering. J Am Ceram Soc 59:4–8. doi:10.1111/j.1151-2916.1976.tb09374.x

    Article  Google Scholar 

  42. Yoon DH, Choi GM (1997) Microstructure and CO gas sensing properties of porous ZnO produced by starch addition. Sens Actuators B 45:251–257. doi:10.1016/S0925-4005(97)00316-X

    Article  Google Scholar 

  43. Feng C, Li W, Li C, Zhu L, Zhang H, Zhang Y, Ruan S, Chen W, Yu L (2012) Highly efficient rapid ethanol sensing based on In2−xNixO3 nanofibers. Sens Actuators B 166:83–88. doi:10.1016/j.snb.2011.12.083

    Article  Google Scholar 

  44. Manorama SV, Izu N, Shin W, Matsubara I, Murayama N (2003) On the platinum sensitization of nanosized cerium dioxide oxygen sensors. Sens Actuators B 89:299–304. doi:10.1016/S0925-4005(03)00005-4

    Article  Google Scholar 

  45. Babaei M, Alizadeh N (2013) Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens Actuators B 183:617–626. doi:10.1016/j.snb.2013.04.045

    Article  Google Scholar 

  46. Sahay PP, Nath RK (2008) Al-doped ZnO thin films as methanol sensors. Sens Actuators B 134:654–659. doi:10.1016/j.snb.2008.06.006

    Article  Google Scholar 

  47. Sun L, Huo L, Zhao H, Gao S, Zhao J (2006) Preparation and gas-sensing property of a nanosized titania thin film towards alcohol gases. Sens Actuators B 114:387–391. doi:10.1016/j.snb.2005.06.006

    Article  Google Scholar 

  48. Zhu Q, Zhang YM, Zhang J, Zhu ZQ, Liu QJ (2015) A new and high response gas sensor for methanol using molecularly imprinted technique. Sens Actuators B 207:398–403. doi:10.1016/j.snb.2014.10.027

    Article  Google Scholar 

  49. Vijaya JJ, Kennedy LJ, Sekaran G, Jeyaraj B, Nagaraja KS (2008) Utilization of strontium added NiAl2O4 composites for the detection of methanol vapors. J Hazard Mater 153:767–774. doi:10.1016/j.jhazmat.2007.09.022

    Article  Google Scholar 

  50. Huo L, Li Q, Zhao H, Yu L, Gao S, Zhao J (2005) Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sens Actuators B 107:915–920. doi:10.1016/j.snb.2004.12.046

    Article  Google Scholar 

  51. Tiong TY, Dee CF, Hamzah AA, Majlis BY, Abdul Rahman S (2014) Enhancement of CuO and ZnO nanowires methanol sensing properties with diode-based structure. Sens Actuators B 202:1322–1332. doi:10.1016/j.snb.2014.05.126

    Article  Google Scholar 

  52. Qin J, Cui Z, Yang X, Zhu S, Li Z, Liang Y (2015) Three-dimensionally ordered macroporous La1-xMgxFeO3 as high performance gas sensor to methanol. J Alloy Compd 635:194–202. doi:10.1016/j.jallcom.2015.01.226

    Article  Google Scholar 

  53. Das D, Choudhury P, Borthakur LJ, Kamrupi IR, Gogoi U, Dolui SK (2014) Methanol vapor sensor based on poly(styrene-co-butylacrylate)/polypyrrole-EG core–shell nanocomposites. Sens Actuators B 199:320–329. doi:10.1016/j.snb.2014.03.100

    Article  Google Scholar 

  54. Katoch A, Sun G-J, Choi S-W, Byun J-H, Kim SS (2013) Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens Actuators B 185:411–416. doi:10.1016/j.snb.2013.05.030

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (61176068 and 61131004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Wang, J. Methanol sensing micro-gas sensors of SnO2–ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning. J Mater Sci 50, 4209–4220 (2015). https://doi.org/10.1007/s10853-015-8972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8972-6

Keywords

Navigation