Skip to main content
Log in

Reduction of the repulsive interaction as origin of helium trapping inside a monovacancy in BCC metals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present the energetic, structural and electronic properties that explain the accumulation of He inside a single vacancy in both a BCC W and a BCC Nb crystals. Using density functional theory, we have obtained the most stable structures for an increasing number of He atoms within the monovacancy, with and without the presence of van der Waals (vdW) interactions. Our results show that the maximum number of He atoms that can be placed in the monovacancy is nine and suggest that the vdW interactions should be taken into account for higher He concentrations produced in bigger n-vacancies. The analysis of the density of states and the He–metal interaction reveals a reduction of the repulsion as the origin of He trapping inside the metallic vacancy. The formation energy grows almost linearly with the number of He atoms included, showing a strong dependence on the bulk modulus, while the binding energy presents a more complex behaviour. Finally, the deformations of the first (1NN), second (2NN) and third (3NN) nearest neighbour atomic distances to the vacancy change in different ways. The maximum deformation obtained (around 0.5 Å) is found with precisely nine He atoms inside the vacancy, just before the bubble collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demkowicz MJ, Misra A, Caro AJ (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108

    Article  Google Scholar 

  2. Höchbauer T, Misra A, Hattar K, Hoagland RG (2005) Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J Appl Phys 98:123516–123517

    Article  Google Scholar 

  3. Misra A, Demkowicz MJ, Zhang X, Hoagland RG (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59:62–65

    Article  Google Scholar 

  4. Hattar K, Demkowicz MJ, Misra A, Robertson IM, Hoagland RG (2008) Arrest of He bubble growth in CuNb multilayer nanocomposites. Scripta Mater 58:541–544

    Article  Google Scholar 

  5. Gao Y, Yang T, Xue J, Yan S, Zhou S, Wanga Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413:11–15

    Article  Google Scholar 

  6. Demkowicz MJ, Bellon P, Wirth BD (2010) Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35:1–7

    Article  Google Scholar 

  7. Zinkle SJ, Ghoniem NM (2011) Prospects for accelerated development of high performance structural materials. J Nucl Mater 417:2–8

    Article  Google Scholar 

  8. Brodrick J, Hepburn DJ, Ackland GJ (2014) Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels. J Nucl Mater 445:291–297

    Article  Google Scholar 

  9. Was GS (2007) Fundamentals of radiation materials science. Springer, New York 191

    Google Scholar 

  10. González C, Fernández-Pello D, Cerdeira MA, Palacios SL, Iglesias R (2014) Helium bubble clustering in copper from first principles. Modell Simul Mater Sci Eng 22:035013–035019

    Article  Google Scholar 

  11. Becquart CS, Domain C (2007) Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Meth B 255:23–26

    Article  Google Scholar 

  12. Lhuillier PE, Belhabib T, Desgardin P, Courtois B, Sauvage T, Barthe MF, Thomann AL, Brault P, Tessier Y (2013) Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten. J Nucl Mater 433:305–313

    Article  Google Scholar 

  13. Abd El Keriem MS, van der Werf DP, Pleiter F (1993) Helium-vacancy interaction in tungsten. Phys Rev B 47:14771–14777

    Article  Google Scholar 

  14. Henriksson KOE, Nordlund K, Keinonen J (2006) Molecular dynamics simulations of helium cluster formation in tungsten. Nucl Instrum Meth B 244:377–391

    Article  Google Scholar 

  15. Li XC, Shu X, Liu YN, Yu Y, Gao F, Lu GH (2012) Analytical WHe and HHe interatomic potentials for a WHHe system. J Nucl Mater 426:31–37

    Article  Google Scholar 

  16. Zhou YL, Wang J, Hou Q, Deng AH (2014) Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten. J Nucl Mater 446:49–55

    Article  Google Scholar 

  17. Becquart CS, Barthe MF, De Backer A (2011) Modelling radiation damage and He production in tungsten. Phys Scr T 145:014048

    Article  Google Scholar 

  18. Takayama A, Ito AM, Saito S, Ohno N, Nakamura H (2013) First-principles investigation on trapping of multiple helium atoms within a tungsten monovacancy. Jpn J Appl Phys 52:01AL03–01AC05

    Article  Google Scholar 

  19. Seletskaia T, Osetsky Y, Stoller RE, Stocks GM (2008) First-principles theory of the energetics of He defects in bcc transition metals. Phys Rev B 78:134103–134111

    Article  Google Scholar 

  20. Kashinath A, Demkowicz MJ (2011) A predictive interatomic potential for He in Cu and Nb. Model Simul Mater Sci 19:035007

    Article  Google Scholar 

  21. Dunn AY, McPhie MG, Capolungo L, Martínez E, Cherkaoui M (2013) A rate theory study of helium bubble formation and retention in CuNb nanocomposites. J Nucl Mater 435:141–152

    Article  Google Scholar 

  22. Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM (2012) Are we van der Waals ready? J Phys 24:424218

    Google Scholar 

  23. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:R558–R561

    Article  Google Scholar 

  24. Kresse G, Furthmuller JJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  25. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  26. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  28. James AM, Lord MP (1992) Macmillan’s chemical and physical data. Macmillan, Basingstoke

    Google Scholar 

  29. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  Google Scholar 

  30. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  31. Becquart CS, Domain C (2009) An object Kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten. J Nucl Mater 385:223–227

    Article  Google Scholar 

  32. Klaver TPC, Hepburn DJ, Ackland GJ (2012) Defect and solute properties in dilute Fe–Cr–Ni austenitic alloys from first principles. Phys Rev B 85:174111

    Article  Google Scholar 

  33. Juslin N, Wirth BD (2013) Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater 432:61–66

    Article  Google Scholar 

  34. Derlet PM, Nguyen-Manh D, Dudarev SL (2007) Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B 76:054107

    Article  Google Scholar 

  35. González C, Iglesias R (2014) Migration mechanisms of helium in copper and tungsten. J Mater Sci 49:8127–8139. doi:10.1007/s10853-014-8522-7

    Article  Google Scholar 

  36. Söderlind P, Yang LH, Moriarty JA, Wills JM (2000) First-principles formation energies of monovacancies in bcc transition metals. Phys Rev B 61:2579–2586

    Article  Google Scholar 

  37. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  38. Satta A, Willaime F, de Gironcoli S (1998) Vacancy self-diffusion parameters in tungsten: finite electron-temperature LDA calculations. Phys Rev B 57:11184–11192

    Article  Google Scholar 

  39. Seletskaia T, Osetsky Y, Stoller RE, Stocks GM (2005) Magnetic interactions influence the properties of helium defects in iron. Phys Rev Lett 94:046403

    Article  Google Scholar 

  40. Becquart CS, Domain C, Sarkar U, DeBacker A, Hou M (2010) Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model. J Nucl Mater 403:7588

    Article  Google Scholar 

  41. Valles G, González C, Martín-Bragado I, Iglesias R, Perlado JM, Rivera A (2015) The influence of high grain boundary density on helium retention in tungsten. J Nucl Mater 457:80–87

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the FP7 project RADINTERFACES and the Spanish MAT2012-38541-C02-01 from the Ministry of Economy and Competitiveness. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Espaola de Supercomputacin (RES) Project FI-2014-1-0008 and the European PRACE-3IP Project (FP7 RI-312763) resource Fionn based in Ireland at ICHEC. Angel Gutiérrez at the UNIOVI Scientific Modelling Cluster is gratefully acknowledged for technical help and CPU time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, C., Cerdeira, M.A., Palacios, S.L. et al. Reduction of the repulsive interaction as origin of helium trapping inside a monovacancy in BCC metals. J Mater Sci 50, 3727–3739 (2015). https://doi.org/10.1007/s10853-015-8935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8935-y

Keywords

Navigation