Skip to main content
Log in

Vacancy and phonon dispersion properties of Be, Co, Hf, Mg, and Re by modified embedded atom method potentials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The modified embedded atom method (MEAM) potentials improved by Jin et al. (Appl. Phys. A120 (2015), p. 189) were applied to calculate the mono- and bi-vacancy properties as well as the phonon dispersions for hexagonal close-packed (HCP) metals Be, Co, Hf, Mg, and Re. We expressed the formulas for calculating the mono- and bi-vacancy properties by the molecular static (MS) method based on the MEAM potentials for HCP metals. The lattice dynamics (LD) method and the MEAM potentials were adopted to calculate the phonon dispersion properties. The calculation results show better agreement with the experimental data than the previous calculations by using the unimproved embedded atom model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used are transparent.

References

  1. Daw MS, Baskes MI (1983). Phys. Rev. Lett. 50:1285

    Article  CAS  Google Scholar 

  2. Daw MS, Baskes MI (1984). Phys. Rev. 29:6443

    Article  CAS  Google Scholar 

  3. Johnson RA (1988). Phys. Rev. B 37:3924

    Article  CAS  Google Scholar 

  4. Oh DJ, Johnson RA (1988). J. Mater. Res. 3:471

    Article  CAS  Google Scholar 

  5. Oh DJ, Johnson RA (1989). J. Mater. Res. 4:1195

    Article  Google Scholar 

  6. Johnson RA (1989). Phys. Rev. B 39:12554

    Article  CAS  Google Scholar 

  7. Baskes MI (1992). Phys. Rev. B 46:2727

    Article  CAS  Google Scholar 

  8. Baskes MI (1987). Phys. Rev. Lett. 59:2666

    Article  CAS  Google Scholar 

  9. Zhang B, Quyang Y, Liao S, Jin Z (1999). Physica B 262:218

    Article  CAS  Google Scholar 

  10. Zhang B, Hu W, Shu X (2003) Theory of embedded atom method and its application to materials science −atomic scale materials design theory. Hunan University Publication Press, Changsha

    Google Scholar 

  11. Hu W, Shu X, Zhang B (2002). Comput. Mater. Sci. 23:175

    Article  CAS  Google Scholar 

  12. Hu W, Zhang B, Huang B, Gao F, Bacon DJ (2001). J. Phys. Condens. Matter 13:1193

    Article  CAS  Google Scholar 

  13. Jin H, An J, Jong Y (2015). Appl. Phys. A Mater. Sci. Process. 120:189

    Article  CAS  Google Scholar 

  14. Jin H, Pak J, Jong Y (2017). Appl. Phys. A Mater. Sci. Process. 123:257

    Article  Google Scholar 

  15. Jon C, Jin H, Hwang C (2017). Radiat. Eff. Defects Solids 172:575

    Article  CAS  Google Scholar 

  16. Jon C, Jin H, Ri C, Song P (2019). Philos. Mag. B 99:2604

    Article  CAS  Google Scholar 

  17. Jong G, Song P, Jin H (2020). Indian J. Phys. 94:753

    Article  CAS  Google Scholar 

  18. Jin H-S, Kim S-W, Kim K-C, Yang H (2020). J. Mol. Model. 26:189

    Article  CAS  Google Scholar 

  19. Baskes MI, Johnson RA (1994). Modelling Simul. Mater. Sci. Eng. 2:147

    Article  CAS  Google Scholar 

  20. Adda Y, Philibert J (1966) La Diffusion Dans les Solides Vol II. Presses Universitaires De France, Paris, p 1132

    Google Scholar 

  21. Cahoon JR, Sherby OD (1992). Metall. Trans. A. 23:2491

    Article  Google Scholar 

  22. Johnson RA, Jr Beeler JR (1981) Interatomic Potentials and Crystalline Defects. The Metallurgical Society AIME, New York, p 165

    Google Scholar 

  23. Shewmon PG, Rhines FN (1954). Trans. TMS-AIME 200:1021

    Google Scholar 

  24. Liu X, Adams JB, Ercolessi F, Moriarty JA (1996). Modelling Simul. Mater. Sci. Eng. 4:293

    Article  CAS  Google Scholar 

  25. Bacon DJ (1988). J. Nucl. Mater. 159:176

    Article  CAS  Google Scholar 

  26. Stedman R, Amilius Z, Pauli R, Sundin O (1976). J. Phys. F: Met. Phys. 6:157

    Article  CAS  Google Scholar 

  27. Wakabayashi N, Scherm RH, Smith HG (1982). Phys. Rev. B 25:5122

    Article  CAS  Google Scholar 

  28. Stassis C, Arch D, McMasters OD, Harmon BN (1981). Phys. Rev. B 24:730

    Article  CAS  Google Scholar 

  29. Gilat G, Rizzi G (1969). Phys. Rev. 185:971

    Article  CAS  Google Scholar 

  30. Raubenheimer LJ, Gilat G (1967). Phys. Rev. 157:586

    Article  CAS  Google Scholar 

Download references

Code availability

The code was written on Matlab.R2016b.

Funding

This work was supported by the National Key Research and Development Program of China (2020YFC1909800).

Author information

Authors and Affiliations

Authors

Contributions

The first and second authors derived the formula and wrote the code together. The third and fourth authors worked together to process the calculation results.

Corresponding author

Correspondence to Hak-Son Jin.

Ethics declarations

Ethics approval

This work has been neither published previously, nor under consideration for publication elsewhere.

Consent to participate

Its publication was approved by all the authors and tacitly by the responsible authorities.

Consent for publication

It will not be published elsewhere in the same form, in English or in any other language, without the written consent of the publisher.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, HC., Jin, HS., Cha, JC. et al. Vacancy and phonon dispersion properties of Be, Co, Hf, Mg, and Re by modified embedded atom method potentials. J Mol Model 27, 156 (2021). https://doi.org/10.1007/s00894-021-04759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04759-4

Keywords

Navigation