Skip to main content

Advertisement

Log in

Consolidation of Cu-based amorphous alloy powders by high-pressure torsion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We applied high-pressure torsion (HPT) for consolidation of gas-atomized metallic glass Cu54Zr22Ti18Ni6 powders into high-density bulk disks. The effects of the number of revolutions (N = 1–5 turns), applied pressure (2.5–10 GPa), and temperature (298–473 K) on densification and structural changes were investigated. The consolidated glassy disks showed an excellent hardness of ~5.2 GPa although a mechanical softening effect along with fragmentation in the center of HPT disks occurred at N > 3 by a couple of branching cracks. The HPT process at higher applied pressures improved the bulk density and inter-particulate bonding, resulting in higher hardness. Increasing the temperature of HPT processing enhanced the densification and deep drawability of the consolidated metallic glass. Although the HPT process did not change the crystallization temperature of the metallic glass powders, it increased the crystallization enthalpy, suggesting the free volume increase and inhibition of a significant nanocrystallization during the HPT process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clausen B, Lee SY, Ustundag E, Aydiner CC, Conner RD, Bourke MAM (2003) Compressive yielding of tungsten fiber reinforced bulk metallic glass composites. Scripta Mater 49:123–128

    Article  Google Scholar 

  2. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  Google Scholar 

  3. Jones H (1984) The status of rapid solidification of alloys in research and application. J Mater Sci 19:1043–1076. doi:10.1007/BF01120015

    Article  Google Scholar 

  4. Eckert J (1997) Mechanical alloying of highly processable glassy alloys. Mater Sci Eng 226–228:364–373

    Article  Google Scholar 

  5. Kim TS, Lee JK, Kim HJ, Bae JC (2005) Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders. Mater Sci Eng A 402:228–233

    Article  Google Scholar 

  6. Scudino S, Venkataraman S, Stoica M, Surreddi KB, Pauly S, Das J, Eckert J (2009) Consolidation and mechanical properties of ball milled Zr50Cu50 glassy ribbons. J Alloy Compd 483:227–230

    Article  Google Scholar 

  7. Yoshida S, Mizushima T, Makino A, Inoue A (2001) Structure and soft magnetic properties of bulk Fe-Al-Ga-P-C-B-Si glassy alloys prepared by consolidating amorphous powders. Mater Sci Eng A 304–306:1019–1022

    Article  Google Scholar 

  8. Lee MH, Bae DH, Kim WT, Kim DH, Rozhkova E, Wheelock PB, Sordelet DJ (2003) Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders. J Non Cryst Solids 315:89–96

    Article  Google Scholar 

  9. Sort J, Ile DC, Zhilyaev AP, Concustell A, Czeppe T, Stoica M, Surinach S, Eckert J, Baro MD (2004) Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion. Scripta Mater 50:1221–1225

    Article  Google Scholar 

  10. Révész A, Henits P, Kovács Z (2010) Structural changes in Zr-based bulk metallic glasses deformed by high pressure torsion. J Alloy Compd 495:338–340

    Article  Google Scholar 

  11. Tong Y, Dmowski W, Witczak Z, Chuang CP, Egami T (2013) Residual elastic strain induced by equal channel angular pressing on bulk metallic glasses. Acta Mater 61:1204–1209

    Article  Google Scholar 

  12. Henits P, Révész A, Kovács Z (2012) Free volume simulation for severe plastic deformation of metallic glasses. Mech Mater 50:81–87

    Article  Google Scholar 

  13. Conner RD, Dandliker RB, Johnson WL (1998) Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater 46:6089–6102

    Article  Google Scholar 

  14. Choi-Yim H, Busch R, Köster U, Johnson WL (1999) Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater 47:2455–2462

    Article  Google Scholar 

  15. Wu XF, Si Y, Suo ZY, Kang Y, Qiu KQ (2009) Synthesis and mechanical behavior of ternary Mg–Cu–Dy in situ bulk metallic glass matrix composite. J Mater Sci 49:6035–6039. doi:10.1007/s10853-009-3822-z

    Article  Google Scholar 

  16. Pham MS, Park KW, Yoo BG, Jang JI, Lee JC (2009) Plasticity improvement of amorphous alloy via skim cold rolling. Met Mater Int 15:209–214

    Article  Google Scholar 

  17. Lee MH, Lee KS, Das J, Thomas J, Kühn U, Eckert J (2010) Improved plasticity of bulk metallic glasses upon cold rolling. Scripta Mater 62:678–681

    Article  Google Scholar 

  18. Zhang Y, Wang WH, Greer AL (2006) Making metallic glasses plastic by control of residual stress. Nat Mater 5:857–860

    Article  Google Scholar 

  19. Wu WF, Zhang CY, Zhang YW, Zeng KY, Li Y (2008) Stress gradient enhanced plasticity in a monolithic bulk metallic glass. Intermetallics 16:1190–1198

    Article  Google Scholar 

  20. Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82:3427–3441

    Article  Google Scholar 

  21. Lu J, Ravichandran G (2003) Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J Mater Res 18:2039–2049

    Article  Google Scholar 

  22. Zhang ZF, Zhang H, Pan XF, Das J, Eckert J (2005) Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett 85:513–521

    Article  Google Scholar 

  23. Yoon EY, Lee DJ, Ahn D-H, Lee ES, Kim HS (2012) Mechanical properties and thermal stability of bulk Cu cold consolidated from atomized powders by high-pressure torsion. J Mater Sci 47:7770–7776. doi:10.1007/s10853-012-6569-x

    Article  Google Scholar 

  24. Ashida M, Horita Z (2012) Effects of ball milling and high-pressure torsion for improving mechanical properties of Al-Al2O3 nanocomposites. J Mater Sci 47:7821–7827. doi:10.1007/s10853-012-6679-5

    Article  Google Scholar 

  25. Joo S-H, Yoon SC, Lee CS, Nam DH, Hong SH, Kim HS (2010) Microstructure and tensile behavior of Al and Al-matrix carbon nanotube composites processed by high pressure torsion of the powders. J Mater Sci 47:7770–7776. doi:10.1007/s10853-010-4382-y

    Google Scholar 

  26. Asgharzadeh H, Joo S-H, Kim HS (2014) Consolidation of carbon nanotube reinforced aluminum composites. Metall Mater Trans A 45:4129–4137

    Article  Google Scholar 

  27. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  28. Kova´cs Z, Henits P, Zhilyaev AP, Re´ve´sz A (2006) Deformation induced primary crystallization in a thermallynon-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scripta Mater 54:1733–1737

    Article  Google Scholar 

  29. Fogagnolo JB, Sa´ Lisboa RD, Bolfarini C, Kiminami CS, Botta WJ (2008) Correlation between heat- and deformation-induced crystallizationof amorphous Al alloys. Phil Mag Lett 88:863–870

    Article  Google Scholar 

  30. Vierke J, Schumacher G, Pilyugin VP, Denks IA, Zizak I, Wolf C, Wanderka N, Wollgarten M, Banhart J (2010) Deformation-induced crystallization in amorphous Al85Ni10La5 alloy. J Alloy Compd 493:683–691

    Article  Google Scholar 

  31. Abrosimova G, Aronin A, Matveev D, Pershina E (2013) Nanocrystal formation, structure and magnetic properties of Fe–Si–B amorphous alloy after deformation. Mater Lett 97:15–17

    Article  Google Scholar 

  32. Van Steenberge N, Hobor S, Suri˜nach S, Zhilyaev A, Houdellier F, Mompiou F, Baro MD, Revesz A, Sort J (2010) Effects of severe plastic deformation on the structure and thermo-mechanical properties of Zr55Cu30Al10Ni5 bulk metallic glass. J Alloy Compd 500:61–67

    Article  Google Scholar 

  33. Czeppe T, Korznikova G, Morgiel J, Korznikov A, Chinh NQ, Ochin P, Sypien A (2009) Microstructure and properties of cold consolidated amorphous ribbons from (NiCu)ZrTiAlSi alloys. J Alloy Compd 483:74–77

    Article  Google Scholar 

  34. Re´ve´sz A, Kis-To´th A, Varga LK, Schafler E, Bakonyi I, Spassov T (2012) Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion. Int J Hydrogen EnergY 37:5769–5776

    Article  Google Scholar 

  35. Yoon EY, Lee DJ, Kim TS, Chae HJ, Jenei P, Gubicza J, Unga T, Janecek M, Vratna J, Lee S, Kim HS (2012) Microstructures and mechanical properties of Mg–Zn–Y alloy consolidated from gas-atomized powders using high-pressure torsion. J Mater Sci 47:7117–7123. doi:10.1007/s10853-012-6408-0

    Article  Google Scholar 

  36. Sauvage X, Champion Y, Pippan R, Cuvilly F, Perrière L, Akhatova A, Renk O (2014) Structure and properties of a nanoscaled composition modulated metallic glass. J Mater Sci 49:5640–5645. doi:10.1007/s10853-014-8279-z

    Article  Google Scholar 

  37. Hóbor S, Kovács Z, Révész A (2011) Effect of accumulated shear on the microstructure and morphology of severelydeformed Cu60Zr30Ti10 metallic glass. J Alloy Compd 509:8641–8648

    Article  Google Scholar 

  38. Hóbor S, Révész A, Zhilyaev AP, Kovács Z (2008) Different nanocrystallization sequence during high pressure torsion and thermal treatments of amorphous Cu60Zr20Ti20 alloy. Rev Adv Mater Sci 18:590–592

    Google Scholar 

  39. Kim HJ, Lee JK, Shin SY, Jeong HG, Kim DH, Bae JC (2004) Cu-based bulk amorphous alloys prepared by consolidation of amorphous powders in the supercooled liquid region. Intermetallics 12:1109–1113

    Article  Google Scholar 

  40. Lee SY, Kim TS, Lee JK, Kim HJ, Kim DH, Bae JC (2006) Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders. Intermetallics 14:1000–1004

    Article  Google Scholar 

  41. Kim TS, Lee JK, Bae JC (2008) Devitrification behavior and mechanical property of Cu54Ni6Zr22Ti18 glass powders. Mater Lett 62:323–326

    Article  Google Scholar 

  42. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  43. Edalati K, Yokoyama Y, Horita Z (2010) High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10. Mater Trans 51:23–26

    Article  Google Scholar 

  44. Hobor S, Re´ve´sz A, Szabo´ PJ, Zhilyaev AP, Kova´csKis V, Kova´cs Z (2008) High pressure torsion of amorphous Cu60Zr30Ti10 alloy. J Appl Phys 104:033525

    Article  Google Scholar 

  45. Zhilyaev AP, Nurislamova GV, Kim BK, Baro MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  46. Wang XD, Cao QP, Jiang JZ, Franz H, Schroers J, Valiev RZ, Ivanisenko Y, Gleiter H, Fecht HJ (2011) Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scripta Mater 64:81–84

    Article  Google Scholar 

  47. Wang YB, Qu DD, Wang XH, Cao Y, Liao XZ, Kawasaki M, Ringer SP, Shan ZW, Langdon TG, Shen J (2012) Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. Acta Mater 60:253–260

    Article  Google Scholar 

  48. Slipenyuk A, Eckert J (2004) Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Mater 50:39–44

    Article  Google Scholar 

  49. Tabor D (1951) The hardness and strength of metals. J Inst Metals 79:1–18

    Google Scholar 

  50. Kim HJ, Lee JK, Kim TS, Bae JC, Park ES, Huh MY, Kim DH (2007) Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling. Mater Sci Eng A 449–451:929–933

    Article  Google Scholar 

  51. Chen M (2008) Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res 38:445–469

    Article  Google Scholar 

  52. Henits P, Kovács Z, Schafler E, Varga K, Lábár JL, Révész A (2010) Nanocrystallization in Al85Ce8Ni5Co2 amorphous alloy obtained by differentstrain rate during high pressure torsion. J Alloy Compd 504S:S91–S94

    Article  Google Scholar 

  53. Boucharat N, Hebert R, Ro¨sner H, Valiev R, Wilde G (2005) Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation. Scripta Mater 53:823–828

    Article  Google Scholar 

  54. Li JF, Cao QP, Zhou YH (2008) Microstructure of Cu60Zr20Ti20 bulk metallicglass rolled at different strain rates. Sci China Ser G 51:394–399

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by A.D.D. through basic research Project (11-01-04-08). H.A. acknowledges the support of his visiting fellowship by the POSTECH Basic Science Research Institute Grant and thanks the University of Tabriz for all of the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Asgharzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, H., Joo, SH., Lee, JK. et al. Consolidation of Cu-based amorphous alloy powders by high-pressure torsion. J Mater Sci 50, 3164–3174 (2015). https://doi.org/10.1007/s10853-015-8877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8877-4

Keywords

Navigation