Skip to main content
Log in

Microstructures and mechanical properties of Mg–Zn–Y alloy consolidated from gas-atomized powders using high-pressure torsion

  • Sintering 2011
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, rapid solidified Mg95Zn4.3Y0.7 (at.%) alloy powders produced by an inert gas atomizer were consolidated using a severe plastic deformation technique of high pressure torsion (HPT) at room temperature and 373 K. The behavior of powder consolidation, matrix microstructural evolution, and mechanical properties of the powders and compacts were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, microhardness, and tensile testing. As the HPT processing temperature increases, the powders are more plastically deformed due to decreased deformation resistance, grain boundaries are more in equilibrium, powder bonding is enhanced due to increased interparticle diffusion, hence, tensile ductility and strength increases. On the other hand, hardness decreases with the increased processing temperature, due to less dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://en.wikipedia.org/wiki/Magnesium. Accessed 17 March 2012

  2. Estrin Y, Yi SB, Brokmeier HG, Zuberova Z, Yoon SC, Kim HS, Hellmig RJ (2008) Int J Mater Res 99:50

    Article  CAS  Google Scholar 

  3. Kim WJ, Hong SI, Lee KH (2010) Metal Mater Inter 16:171

    Article  CAS  Google Scholar 

  4. Kim DH, Lim HK, Kim YK, Kyeong JS, Kim WT, Kim DH (2011) Metal Mater Inter 17:383

    Article  CAS  Google Scholar 

  5. Suzuki M, Kimura T, Koike J, Maruyama K (2003) Scripta Mater 48:997

    Article  CAS  Google Scholar 

  6. Kim SH, Kim DH, Kim NJ (1997) Mater Sci Eng A 226–228:1030

    Google Scholar 

  7. Shin B, Kim Y, Bae D (2008) J Korean Inst Met Mater 46:1

    Google Scholar 

  8. Shin B, Yoon S, Ha C, Yun S, Bae D (2010) Korean J Met Mater 48:116

    Article  CAS  Google Scholar 

  9. Kang MG, So TI, Jung HC, Shin KS (2011) Korean J Met Mater 49:686

    CAS  Google Scholar 

  10. Lee BD, Baek UH, Jang KS, Han JW, Son HT (2011) Korean J Met Mater 49:440

    CAS  Google Scholar 

  11. Bae DH, Kim SH, Kim DH, Kim WT (2002) Acta Mater 50:2343

    Article  CAS  Google Scholar 

  12. Kim DH, Kim YK, Kim WT, Kim DH (2011) Korean J Met Mater 49:145

    CAS  Google Scholar 

  13. Cai J, Ma GC, Liu Z, Zhang HF, Hu ZQ (2006) J Alloy Compd 422:92

    Article  CAS  Google Scholar 

  14. Nishida M, Kawamura Y, Yamamoto T (2004) Mater Sci Eng A 375–377:1217

    Google Scholar 

  15. Crivello J-C, Nobuki T, Kuji T (2007) Intermetallics 15:1432

    Article  CAS  Google Scholar 

  16. Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mater Trans 42:1172

    Article  CAS  Google Scholar 

  17. Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) J Mater Res 16:1894

    Article  CAS  Google Scholar 

  18. Yoon SC, Bok CH, Seo MH, Hong SJ, Kim HS (2008) J Korean Powder Metal Inst 15:31

    Article  Google Scholar 

  19. Kim HS (2002) Mater Sci Eng A 328:317

    Article  Google Scholar 

  20. Kim TS, Chae HJ, Lee JK, Jung HG, Bae JC (2007) Mater Sci Forum 534:793

    Article  Google Scholar 

  21. Kim HS, Estrin Y, Bush MB (2000) Acta Mater 48:493

    Article  CAS  Google Scholar 

  22. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  23. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33

    Article  Google Scholar 

  24. Kim HS, Seo MH, Hong SI (2000) Mater Sci Eng A 291:86

    Article  Google Scholar 

  25. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  26. Song YP, Yoon EY, Lee DJ, Lee JW, Kim HS (2011) Mater Sci Eng A 528:4840

    Article  Google Scholar 

  27. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (2000) Mater Sci Eng A 282:78

    Article  Google Scholar 

  28. Alexandrov IV, Zhang K, Kilmametov AR, Lu K, Valiev RZ (1997) Mater Sci Eng A 234–236:331

    Google Scholar 

  29. Hong SJ, Kim T-S, Kim HS, Kim WT, Chun BS (1999) Mater Sci Eng A 271:469

    Article  Google Scholar 

  30. Kim T-S, Chae HJ (2008) Rev Adv Mater Sci 18:769

    Google Scholar 

  31. Kim T-S (2010) J Alloys Compd 504S:S496

    Article  Google Scholar 

  32. Amaral LF, Oliveira IR, Salomao R, Frollini E, Pandolfelli VC (2010) Ceram Int 36:1047

    Article  CAS  Google Scholar 

  33. Chae HJ, Kim YD, Kim T-S (2011) J Alloys Compd 509S:S250

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0026981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, E.Y., Lee, D.J., Kim, TS. et al. Microstructures and mechanical properties of Mg–Zn–Y alloy consolidated from gas-atomized powders using high-pressure torsion. J Mater Sci 47, 7117–7123 (2012). https://doi.org/10.1007/s10853-012-6408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6408-0

Keywords

Navigation