Skip to main content
Log in

Structure and properties of a nanoscaled composition modulated metallic glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the possibilities offered by severe plastic deformation to prepare nanoscaled composites based on a bulk metallic glass. High pressure torsion was applied to a mixture of aluminium and metallic glass powders to process a composite at the nanoscale. Ultimate mixing of the two phases was achieved for a very large level of deformation resulting in a fully amorphous structure. Using analytical scanning transmission electron microscopy, nanoscaled chemical gradients were clearly exhibited. The very high strength (HV ~ 700) of the final metallic glass is attributed to this unique nanoscaled composition modulated structure. The role of shear bands both in the partial mixing and in the amorphization mechanism is discussed on the basis of a simple geometrical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vidal V, Thilly L, Van Petegem S, Stuhr U, Lecouturier F, Renault P-O, Van Swygenhoven H (2009) Plasticity of nanostructured Cu–Nb-based wires: strengthening mechanisms revealed by in situ deformation under neutrons. Scripta Mater 60:171–174

    Article  Google Scholar 

  2. Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437

    Article  Google Scholar 

  3. Nieh TG, Yang Y, Lu J, Liu CT (2012) Effect of surface modifications on shear banding and plasticity in metallic glasses: an overview. Prog Nat Sci Mater Int 22:355–363

    Article  Google Scholar 

  4. Chen W, Wu C, Chen J, He A (2013) An electron microscopy study of vein-like grain boundary microstructure in nitrocarburized low carbon steels. J Mater Sci Technol 29:669–672

    Article  Google Scholar 

  5. Perrière L, Champion Y (2012) Phases distribution dependent strength in metallic glass–aluminium composites prepared by spark plasma sintering. Mater Sci Eng A 548:112–117

    Article  Google Scholar 

  6. Wang Y, Li J, Hamza AV, Barbee TW (2007) Ductile crystalline–amorphous nanolaminates. PNAS 104:11155–11160

    Article  Google Scholar 

  7. Nieh TG, Barbee TW, Wadsworth J (1999) Tensile properties of a free-standing Cu/Zr nanolaminate (or compositionally-modulated thin film). Scripta Mater 41:929–935

    Article  Google Scholar 

  8. Donohue A, Spaepen F, Hoagland RG, Misra A (2007) Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl Phys Lett 91:241905

    Article  Google Scholar 

  9. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  10. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  11. Sauvage X, Wetscher F, Pareige P (2005) Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater 53:2127–2135

    Article  Google Scholar 

  12. Sauvage X, Jessner P, Vurpillot F, Pippan R (2008) Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation. Scripta Mater 58:1125–1128

    Article  Google Scholar 

  13. Tian YZ, Li JJ, Zhang P, Wu SD, Zhang ZF, Kawasaki M, Langdon TG (2012) Microstructures, strengthening mechanisms and fracture behavior of Cu–Ag alloys processed by high-pressure torsion. Acta Mater 60:269–281

    Article  Google Scholar 

  14. Quelennec X, Menand A, Le Breton JM, Pippan R, Sauvage X (2010) Homogeneous Cu–Fe supersaturated solid solutions prepared by severe plastic deformation. Philos Mag 90:1179–1195

    Article  Google Scholar 

  15. Wilde G, Rösner H (2007) Stability aspect of bulk nanostructured metals and composites. J Mater Sci 42:1772–1781. doi:10.1007/s10853-006-0986-7

    Article  Google Scholar 

  16. Zhang NX, Kawasaki M, Huang Y, Langdon TG (2013) Microstructural evolution in two-phase alloys processed by high-pressure torsion. J Mater Sci 48:4582–4591. doi:10.1007/s10853-012-7087-6

    Article  Google Scholar 

  17. Xu W, Wu X, Honma T, Ringer SP, Xia K (2009) Nanostructured Al–Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing. Acta Mater 57:4321–4330

    Article  Google Scholar 

  18. Bachmaier A, Hohenwarter A, Pippan R (2009) New procedure to generate stable nanocrystallites by severe plastic deformation. Scripta Mater 61:1016–1019

    Article  Google Scholar 

  19. Yoon EY, Lee DJ, Ahn D-H, Lee ES, Kim HS (2012) Mechanical properties and thermal stability of bulk Cu cold consolidated from atomized powders by high-pressure torsion. J Mater Sci 47:7770–7776. doi:10.1007/s10853-012-6569-x

    Article  Google Scholar 

  20. Ashida M, Horita Z (2012) Effects of ball milling and high pressure torsion for improving mechanical properties of Al–Al2O3 nanocomposites. J Mater Sci 47:7821–7827. doi:10.1007/s10853-012-6569-x

    Article  Google Scholar 

  21. Bellon P, Averback R (1995) Nonequilibrium roughening of interfaces in crystals under shear: application to ball milling. Phys Rev Lett 74:1819–1822

    Article  Google Scholar 

  22. Ashkenazy Y, Vo NQ, Schwen D, Averback RS, Bellon P (2012) Shear induced chemical mixing in heterogeneous systems. Acta Mater 60:984–993

    Article  Google Scholar 

  23. Nowak S, Perrière L, Dembinski L, Tusseau-Nenez S, Champion Y (2011) Approach of the spark plasma sintering mechanism in Zr57Cu20Al10Ni8Ti5 metallic glass. J Alloys Compd 509:1011–1019

    Article  Google Scholar 

  24. Perrière L, Thai MT, Tusseau-Nenez S, Blétry M, Champion Y (2011) Spark plasma sintering of a Zr-based metallic glass. Adv Eng Mater 11:581–586

    Article  Google Scholar 

  25. Koike J, Parkin DM, Nastasi M (1990) The role of shear instability in amorphization of cold-rolled NiTi. Philos Mag Lett 62:257–264

    Article  Google Scholar 

  26. Prokoshkin SD, Khmelevskaya IY, Dobatkin SB, Trubitsyna IB, Tatyanin EV, Stolyarov VV, Prokofiev EA (2005) Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Mater 53:2703–2714

    Article  Google Scholar 

  27. Sauvage X, Ping DH, Blavette D, Hono K (2001) Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater 49:389–394

    Article  Google Scholar 

  28. Ma E (2003) Amorphization in mechanically driven material systems. Scripta Mater 49:941–946

    Article  Google Scholar 

  29. Sun YF, Todaka Y, Umemoto M, Tsuji N (2008) Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques. J Mater Sci 43:7457–7464. doi:10.1007/s10853-008-2634-x

    Article  Google Scholar 

  30. Sun YF, Fuji H, Tsuji N, Todaka Y, Umemoto M (2010) Fabrication of ZrAlNiCu bulk metallic glass composites containing pure copper particles by high-pressure torsion. J Alloys Compd 492:149–152

    Article  Google Scholar 

  31. Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag insitu composite wires studied by transmission electron microscopy and tomographic atom probe. Acta Mater 57:5254–5263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sauvage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauvage, X., Champion, Y., Pippan, R. et al. Structure and properties of a nanoscaled composition modulated metallic glass. J Mater Sci 49, 5640–5645 (2014). https://doi.org/10.1007/s10853-014-8279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8279-z

Keywords

Navigation