Skip to main content
Log in

Synthesis, characterization, and electrical property of CdTe/trioctylphosphine oxide core/shell nanowires

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thick trioctylphosphine oxide (TOPO) layers were controllably coated onto CdTe nanowires. The shell thicknesses were readily tuned by controlling the reaction temperatures in coordinating TOPO solvent or by varying amounts of TOPO in noncoordinating ODE solvent. The shells were coherent and rough if synthesized in the TOPO solvent, while the shells became very uniform and smooth if synthesized in the ODE solvent. The electrically insulating effects of TOPO shells were directly confirmed through nanodevice of individual core/shell nanowire (NW). The present scheme to overcoat TOPO around semiconductor NWs could, in principle, be exploited to be a general approach to encapsulate a variety of colloidal nanocrystals to form novel core–shell nanohybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartland GV, Carey CR, Yu YH, Kuno M (2009) Ultrafast transient absorption measurements of charge carrier dynamics in single II-VI nanowires. J Phys Chem C 113:19077–19081

    Article  Google Scholar 

  2. Chang HC, Zhou RH, Protasenko V, Kuno M, Singh AK et al (2007) CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission. J Appl Phys 101:073704

    Article  Google Scholar 

  3. Matei E, Ion L, Antohe S, Neumann R, Enculescu I (2010) Multisegment CdTe nanowire homojunction photodiode. Nanotechnology 21:105202

    Article  Google Scholar 

  4. Tan SS, Tang ZY, Liang XR, Kotov NA (2004) Resonance tunneling diode structures on CdTe nanowires made by conductive AFM. Nano Lett 4:1637–1641

    Article  Google Scholar 

  5. Park H, Doh YJ, Maher KN, Ouyang L, Yu CL et al (2008) Electrically driven light emission from individual CdSe nanowires. Nano Lett 8:4552–4556

    Article  Google Scholar 

  6. Khandelwal A, Jena D, Grebinski JW, Hull KL, Kuno MK (2006) Ultrathin CdSe nanowire field-effect transistors. J Electron Mater 35:170–172

    Article  Google Scholar 

  7. Leininger S, Olenyuk B, Stang PJ (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853–907

    Article  Google Scholar 

  8. Braun M, von Holt B, Kudera S, Weiss A, Schrader TE et al (2008) Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR. J Mater Chem 18:2728–2732

    Article  Google Scholar 

  9. Wang Y, Tang Z, Liang X, Liz-Marzan LM, Kotov NA (2004) SiO2-coated CdTe nanowires: bristled nano centipedes. Nano Lett 4:225–231

    Article  Google Scholar 

  10. Liang XR, Tan SS, Tang ZY, Kotov NA (2004) Investigation of transversal conductance in semiconductor CdTe nanowires with and without a coaxial silica shell. Langmuir 20:1016–1020

    Article  Google Scholar 

  11. Zhu YC, Bando Y, Xue DF, Xu FF, Golberg D (2003) Insulating tubular BN sheathing on semiconducting nanowires. J Am Chem Soc 125:14226–14227

    Article  Google Scholar 

  12. Lu GQ, Chen ZG, Zou J, Liu G, Li F et al (2007) ZnS nanowires and their coaxial lateral nanowire heterostructures with BN. Appl Phys Lett 90:103117

    Article  Google Scholar 

  13. Niu HJ, Zhang LW, Gao MY, Chen YM (2005) Amphiphilic ABC triblock copolymer-assisted synthesis of core/shell structured CdTe nanowires. Langmuir 21:4205–4210

    Article  Google Scholar 

  14. Kovtyukhova NI, Martin BR, Mbindyo JKN, Smith PA, Razavi B et al (2001) Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J Phys Chem B 105:8762–8769

    Article  Google Scholar 

  15. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  Google Scholar 

  16. Pientka M, Dyakonov V, Meissner D, Rogach A, Vanderzande D et al (2004) Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals. Nanotechnology 15:163–170

    Article  Google Scholar 

  17. Kuno M, Ahmad O, Protasenko V, Bacinello D, Kosel TH (2006) Solution-based straight and branched CdTe nanowires. Chem Mater 18:5722–5732

    Article  Google Scholar 

  18. Liu S, Yang C, Zhang W-H, Li C (2011) Facile synthesis of straight and branched CdTe nanowires using CdO as precursor. J Nanosci Nanotechnol 11:11181–11184

    Article  Google Scholar 

  19. Chekmarev AM, Kim V, Sinegribova OA, Bukar NV, Chibrikina EI (1997) Thermodynamics of association and micellization of organophosphorus extractants in toluene. Colloid J 59:510–513

    Google Scholar 

  20. Advincula RC (2006) Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans 23:2778–2784

    Article  Google Scholar 

  21. Green M, Allsop N, Wakefield G, Dobson PJ, Hutchison JL (2002) Trialkylphosphine oxide/amine stabilised silver nanocrystals-the importance of steric factors and Lewis basicity in capping agents. J Mater Chem 12:2671–2674

    Article  Google Scholar 

  22. Ariga K, Vinu A, Hill JP, Mori T (2007) Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coord Chem Rev 251:2562–2591

    Article  Google Scholar 

  23. Seidel SR, Stang PJ (2002) High-symmetry coordination cages via self-assembly. Acc Chem Res 35:972–983

    Article  Google Scholar 

  24. Lorenz JK, Ellis AB (1998) Surfactant-semiconductor interfaces: perturbation of the photoluminescence of bulk cadmium selenide by adsorption of tri-n-octylphosphine oxide as a probe of solution aggregation with relevance to nanocrystal stabilization. J Amer Chem Soc 120:10970–10975

    Article  Google Scholar 

  25. Chan DSH, Hill AE (1976) Instability in the conductivity of cadmium selenide films. Thin Solid Films 38:163–169

    Article  Google Scholar 

  26. Belkouch S, Landheer D, Masson DP, Das SR, Quance T et al (1998) Effects of initial annealing treatments on the electrical characteristics and stability of unpassivated CdSe thin film transistors. J Vac Sci Technol, A 16:860–863

    Article  Google Scholar 

  27. Lin Y-F, Chen T-H, Chang C-H, Chang Y-W, Chiu Y-C et al (2010) Electron transport in high-resistance semiconductor nanowires through two-probe measurements. Phys Chem Chem Phys 12:10928–10932

    Article  Google Scholar 

  28. Zhang Z, Yao K, Liu Y, Jin C, Liang X et al (2007) Quantitative analysis of current-voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv Funct Mater 17:2478–2489

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11179037, 51402242), the Fundamental Research Funds for the Central Universities (XDJK2014C134, SWU113024), and the Cultural Program for Young Talents of Science and Technology in Innovating New Products from Chongqing Science & Technology Commission (CSTC2013KJRC-QNRC50001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Liu or Xin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, S. & Xu, X. Synthesis, characterization, and electrical property of CdTe/trioctylphosphine oxide core/shell nanowires. J Mater Sci 50, 3103–3109 (2015). https://doi.org/10.1007/s10853-015-8870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8870-y

Keywords

Navigation