Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites

Abstract

Nanocomposites of epoxy with 3 and 5 wt% graphene nanoplatelets (GnPs) were fabricated with GnP sizes of ~5 and <1 μm dispersed within an epoxy resin using a sonication process followed by three-roll milling. The morphology, mechanical, and thermal properties of the composites were investigated. Tensile and flexural properties measurements of these nanocomposites indicated higher modulus and strength with increasing concentration of small GnPs sizes (<1 μm, GnP-C750). The incorporation of larger GnPs sizes (~5 μm, GnP-5) significantly improved the tensile and flexural modulus but reduced the strength of the resulting composites. At 35 °C, the dynamic storage modulus of GnP-5/epoxy composites increased with increasing platelet concentration, and improved by 12 % at 3 wt% and 23 % at 5 wt%. The smaller GnP-C750 increased the storage modulus by 5 % at 3 wt% loading but only 2 % at 5 wt% loading. The glass transition temperatures of the composites increased with increasing platelet concentration regardless of the GnP particle size. A marked improvement in thermal conductivity was measured with the incorporation of the larger GnP size reaching 115 % at 5 wt% loading. The effects of different platelet sizes of the GnP reinforcement on the damage mechanisms of these nanocomposites were studied by scanning electron microscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Shokrieh M, Esmkhani M, Shahverdi HR, Vahedi F (2013) Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the Mechanical properties of epoxy nanocomposites. Sci Adv Mater 5(3):260–266

    Article  Google Scholar 

  2. 2.

    Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci 57(4):660–723

    Article  Google Scholar 

  3. 3.

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  4. 4.

    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  5. 5.

    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  6. 6.

    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  Google Scholar 

  7. 7.

    Chen GH, Wu DJ, Weng WG, He B, Yan WL (2001) Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci 82:2506–2513

    Article  Google Scholar 

  8. 8.

    Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45:8211–8219

    Article  Google Scholar 

  9. 9.

    Sandler JKW, Pegel S, Cadek M, Gojny F, Es MV, Lohmar J et al (2004) A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45(6):2001–2015

    Article  Google Scholar 

  10. 10.

    Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614. doi:10.1007/s10853-011-5572-y

    Article  Google Scholar 

  11. 11.

    XG Sciences, Inc. www.xgsciences.com

  12. 12.

    Singh S, Srivastava VK, Prakash R (2014) Influences of carbon nanofillers on mechanical performance of epoxy resin polymer. Appl Nano Sci. doi:10.1007/s1320401403190

    Google Scholar 

  13. 13.

    Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Article  Google Scholar 

  14. 14.

    Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    Article  Google Scholar 

  15. 15.

    Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z, Koratkar N (2009) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183

    Article  Google Scholar 

  16. 16.

    Zaman I, Phan TT, Kuan HC, Meng QS, La LTB, Lee L et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611

    Article  Google Scholar 

  17. 17.

    Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nuesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5538

    Article  Google Scholar 

  18. 18.

    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron- phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  Google Scholar 

  19. 19.

    Halpin J (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3(4):732–734

    Google Scholar 

  20. 20.

    Mori T, Tanaka K (1973) Average stress in matrix and average elasticenergy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  21. 21.

    Cox H (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79

    Article  Google Scholar 

  22. 22.

    Gao XL, Li K (2005) A shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct 42(5–6):1649–1667

    Article  Google Scholar 

  23. 23.

    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  Google Scholar 

  24. 24.

    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297–2302

    Article  Google Scholar 

  25. 25.

    Zaman I, Manshoor B, Khalid A, Meng QS, Araby S (2014) Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study. J Mater Sci 49:5856–5865. doi:10.1007/s10853-014-8296-y

    Article  Google Scholar 

  26. 26.

    King JA, Klimek DR, Miskioglu I, Odegard GM (2014) Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater. doi:10.1177/0021998314522674

    Google Scholar 

  27. 27.

    King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. Appl Polym Sci 128(6):4217–4223

    Article  Google Scholar 

  28. 28.

    Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  Google Scholar 

  29. 29.

    Jana S, Zhong WH (2009) Curing characteristics of an epoxy resin in the presence of ball-milled graphite particles. J Mater Sci 44(8):1987–1997. doi:10.1007/s10853-009-3293-2

    Article  Google Scholar 

  30. 30.

    Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  Google Scholar 

  31. 31.

    Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43(16):4365–4373

    Article  Google Scholar 

  32. 32.

    Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48(3):592–603

    Article  Google Scholar 

  33. 33.

    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    Article  Google Scholar 

  34. 34.

    Yan HY, Tang YX, Long W, Li YF (2014) Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49:5256–5264. doi:10.1007/s10853-014-8198-z

    Article  Google Scholar 

  35. 35.

    Chu K, Li WS, Dong HF (2013) Role of graphene waviness on the thermal conductivity of graphene composites. Appl Phys A 111:221–225

    Article  Google Scholar 

  36. 36.

    Xiang JL, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49:773–778

    Article  Google Scholar 

  37. 37.

    Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42(14):5251–5255

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the China Scholarship Council (CSC) and the Composite Materials and Structures Center (CMSC) at Michigan State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lawrence T. Drzal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Drzal, L.T., Qin, Y. et al. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50, 1082–1093 (2015). https://doi.org/10.1007/s10853-014-8665-6

Download citation

Keywords

  • Epoxy
  • Storage Modulus
  • Dynamic Mechanical Analysis
  • Epoxy Matrix
  • Epoxy Composite