Skip to main content
Log in

Facile fabrication of superparamagnetic coaxial gold/halloysite nanotubes/Fe3O4 nanocomposites with excellent catalytic property for 4-nitrophenol reduction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel superparamagnetic gold/halloysite nanotubes/Fe3O4 (Au/HNTs/Fe3O4) nanocomposite with coaxial structure was designed and fabricated by selective decoration of the inner lumen and the external wall of halloysite nanotubes (HNTs) based on the difference inside/outside surface charges. The structure and composition of Au/HNTs/Fe3O4 were characterized by transmission electron microscope, powder X-ray diffraction, and X-ray fluorescence. The results indicated that Au nanorods selectively generated within the lumen of HNTs, while Fe3O4 nanoparticles uniformly deposited on the external wall. It was particularly worth mentioning that the structure of HNTs was not destroyed in the preparation process of Au/HNTs/Fe3O4 nanocomposites. The catalytic activity of the as-prepared Au/HNTs/Fe3O4 was investigated for the reduction of 4-nitrophenol in the presence of NaBH4. The Au/HNTs/Fe3O4 nanocomposites exhibited excellent catalytic activity and cycling stability according to the kinetic data of the catalytic reduction reaction. In addition, the Au/HNTs/Fe3O4 catalysts can be easily manipulated by an external magnetic field for recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bates TF, Hildebrand FA, Swineford A (1950) Morphology and structure of endellite and halloysite. Am Mineral 35:463–484

    Google Scholar 

  2. Lvov YM, Shchukin DG, Mhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  Google Scholar 

  3. Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751

    Article  Google Scholar 

  4. Liu MX, Guo BC, Du ML, Cai XJ, Jia DM (2007) Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18:455703

    Article  Google Scholar 

  5. Mu B, Zhao MF, Liu P (2008) Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization. J Nanopart Res 10:831–838

    Article  Google Scholar 

  6. Xie YF, Qian DY, Wu DL, Ma XF (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168:959–963

    Article  Google Scholar 

  7. Zhu H, Du ML, Zou ML, Xu CS, Fu YQ (2012) Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Trans 41:10465–10471

    Article  Google Scholar 

  8. Li CP, Wang JQ, Feng SQ, Yang ZL, Ding SJ (2013) Low-temperature synthesis of heterogeneous crystalline TiO2-halloysite nanotubes and their visible light photocatalytic activity. J Mater Chem A 1:8045–8054

    Article  Google Scholar 

  9. Xing WN, Ni L, Huo PW, Lu ZY, Liu XL, Luo YY, Yan YS (2012) Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci 259:698–704

    Article  Google Scholar 

  10. Wang Q, Zhang JP, Wang AQ (2013) Spray-dried magnetic chitosan/Fe3O4/halloysite nanotubes/ofloxacin microspheres for sustained release of ofloxacin. RSC Adv 3:23423–23431

    Article  Google Scholar 

  11. Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167–183

    Article  Google Scholar 

  12. Lvov Y, Price R (2008) Halloysite nanotubules a novel substrate for the controlled delivery of bioactive molecules bio-inorganic hybrid nanomaterials. Wiley, Berlin, pp 440–478

    Google Scholar 

  13. Suh Y, Kil D, Chung K, Abdullayev E, Lvov Y, Mongayt D (2011) Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent. J Nanosci Nanotechnol 11:661–665

    Article  Google Scholar 

  14. Lee Y, Jung GE, Cho SJ, Geckeler KE, Fuchs H (2013) Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale 5:8577–8585

    Article  Google Scholar 

  15. Tan DY, Yuan P, Annabi-Bergaya F, Yu HG, Liu D, Liu HM, He HP (2013) Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Micropor Mesopor Mater 179:89–98

    Article  Google Scholar 

  16. Abdullayev E, Lvov Y (2010) Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J Mater Chem 20:6681–6687

    Article  Google Scholar 

  17. Chen W, Pan XL, Bao XH (2007) Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc 129:7421–7426

    Article  Google Scholar 

  18. Pan XL, Bao XH (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562

    Article  Google Scholar 

  19. Friedrich H, Guo SJ, de Jongh PE, Pan XL, Bao XH, de Jong KP (2011) A quantitative electron tomography study of ruthenium particles on the interior and exterior surfaces of carbon nanotubes. ChemSusChem 4:957–963

    Article  Google Scholar 

  20. Shchukin D, Price R, Lvov Y (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513

    Article  Google Scholar 

  21. Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134:12134–12137

    Article  Google Scholar 

  22. Pan JM, Hang H, Dai XH, Dai JD, Huo PW, Yan YS (2012) Switched recognition and release ability of temperature responsive molecularly imprinted polymers based on magnetic halloysite nanotubes. J Mater Chem 22:17167–17175

    Article  Google Scholar 

  23. Abdullayev E, Joshi A, Wei WB, Zhao YF, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226

    Article  Google Scholar 

  24. Abdullayev E, Sakakibara K, Okamoto K, Wei WB, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Interface 3:4040–4046

    Article  Google Scholar 

  25. Wang Q, Zhang JP, Zheng YA, Wang AQ (2014) Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloid Surf B 113:51–58

    Article  Google Scholar 

  26. Mu B, Liu P, Dong Y, Lu CY, Wu XL (2010) Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci A 48:3135–3144

    Article  Google Scholar 

  27. Davies MB, Partridge DA, Austin J (1991) Vitamin C: its chemistry and biochemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  28. Bradshaw MP, Barril C, Clark AC, Prenzler PD, Scollary GR (2011) Ascorbic acid: a review of its chemistry and reactivity in relation to a wine environment. Crit Rev Food Sci 51:479–498

    Article  Google Scholar 

  29. Lin YT, Liang CJ (2013) Carbon tetrachloride degradation by alkaline ascorbic acid solution. Environ Sci Technol 47:3299–3307

    Google Scholar 

  30. Zhu YH, Stubbs LP, Ho F, Liu RZ, Ship CP, Maguire JA, Hosmane NS (2010) Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2:365–374

    Article  Google Scholar 

  31. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals-a review. Clay Miner 40:383–426

    Article  Google Scholar 

  32. Barrientos-Ramirez S, Ramos-Fernandez EV, Silvestre-Albero J, Speulveda A, Pastor-Blas MM, Gonzalez-Montiel A (2009) Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Micropor Mesopor Mater 120:132–140

    Article  Google Scholar 

  33. Deng Y, White GN, Dixon JB (2002) Effect of structural stress on the intercalation rate of kaolinite. J Colloid Interf Sci 250:379–393

    Article  Google Scholar 

  34. Brindley GW (1980) Order-disorder in clay mineral structures. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogist Society, London

  35. Sharma MK, Ambolikar AS, Aggarwal SK (2012) Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode. J Nanopart Res 14:1094–1103

    Article  Google Scholar 

  36. Zhang M, Cushing BL, O’Connor CJ (2008) Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 19:085601

    Article  Google Scholar 

  37. Mu B, Kang YR, Wang AQ (2013) Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals. J Mater Chem A 1:4804–4811

    Article  Google Scholar 

  38. Jenkins R, Gould RW, Gedcke D (1995) Quantitative X-ray spectrometry, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  39. Sitepu H, Kapylova MG, Quirt DH, Cutler JN, Kotzer TG (2005) Synchrotron micro-X-ray fluorescence analysis of natural diamonds: first steps in identification of mineral inclusions in situ. Am Miner 90:1740–1747

    Article  Google Scholar 

  40. Zhang W, Tan FT, Wang W, Qiu XL, Qiao XL, Chen JG (2012) Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J Hazard Mater 217–218:36–42

    Google Scholar 

  41. Liou RM, Chen SH, Huang CH, Lai CL, Shih CY, Chang JS, Hung MY (2010) Catalytic wet peroxide oxidation of p-nitrophenol by Fe(III) supported on resin. Water Sci Technol 62:1879–1887

    Article  Google Scholar 

  42. Liu B, Li S, Zhao YJ, Wu WF, Zhang XX, Gu XY, Li RH, Yang SG (2010) Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process. J Hazard Mater 176:213–219

    Article  Google Scholar 

  43. Wang X, Zhao HM, Quan X, Zhao YZ, Chen S (2009) Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation. J Hazard Mater 166:547–552

    Article  Google Scholar 

  44. Liu X, Cheng HM, Cui P (2014) Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride. Appl Surf Sci 292:695–701

    Article  Google Scholar 

  45. Mu B, Wang Q, Wang AQ (2013) Preparation of magnetic attapulgite nanocomposite for the adsorption of Ag+ and application for catalytic reduction of 4-nitrophenol. J Mater Chem A 1:7083–7090

    Article  Google Scholar 

  46. Du XY, He J, Zhu J, Sun LJ, An SS (2012) Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Appl Surf Sci 258:2717–2723

    Article  Google Scholar 

  47. Tang SC, Vongehr S, Meng XK (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  Google Scholar 

  48. Du Y, Chen H, Chen R, Xu N (2004) Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl Catal A 277:259–264

    Article  Google Scholar 

  49. Mei Y, Lu Y, Polzer F, Ballauff M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069

    Article  Google Scholar 

  50. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363

    Article  Google Scholar 

  51. Jana S, Ghosh SK, Nath S, Pande S, Praharaj S, Panigrahi S, Basu S, Endo T, Pal T (2006) Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl Catal A 313:41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, B., Zhang, W. & Wang, A. Facile fabrication of superparamagnetic coaxial gold/halloysite nanotubes/Fe3O4 nanocomposites with excellent catalytic property for 4-nitrophenol reduction. J Mater Sci 49, 7181–7191 (2014). https://doi.org/10.1007/s10853-014-8426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8426-6

Keywords

Navigation