Skip to main content
Log in

High cycle fatigue properties of cast Mg–xNd–0.2Zn–Zr alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile and fatigue strength of cast Mg–xNd–0.2Zn–0.45Zr alloys (x = 0, 1, 2, 3 wt%) in both solution-treated (T4) and solution + 200 °C peak-aged (T6-PA) conditions were investigated in the present study. The results indicate that Neodymium (Nd) is an effective element to improve both the tensile and fatigue properties of cast Mg–0.2Zn–Zr alloys. The strengthening effect depends on its content in a way of power function (σ = σ0 + K C Nd n), where the power exponent n is about 0.52–0.54 for yield strength (YS) and 0.59–0.61 for fatigue strength. The yield strengthening effect of Nd element in the form of precipitates (T6-PA) is about three times of that as solution atoms (T4), while the fatigue strengthening effect of Nd element in the form of precipitates is only about 50 % higher than that as solution atoms. The improved strength (both YS and ultimate tensile strength) can lead to the same amount improvement of the fatigue strength in T4-treated alloys, while only can cause less than half improvement of the fatigue strength in T6-PA-treated alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agnew SR, Nie JF (2010) Preface to the viewpoint set on: the current state of magnesium alloy science and technology. Scripta Mater 63:671–673

    Article  Google Scholar 

  2. Sajuri ZB, Miyashita Y, Hosokai Y, Mutoh Y (2006) Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. Int J Mech Sci 48:198–209

    Article  Google Scholar 

  3. Lu Y, Taheri F, Gharghouri MA, Hand HP (2009) Experimental and numerical study of the effects of porosity on fatigue crack initiation of HPDC magnesium AM60B alloy. J Alloys Compd 470:202–213

    Article  Google Scholar 

  4. Horstemeyer MF, Yang N, Gall K, McDowell DL, Fan J, Gullett PM (2004) High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater 52:1327–1336

    Article  Google Scholar 

  5. Xu DK, Liu L, Xu YB, Han EH (2008) The fatigue behavior of I-phase containing as-cast Mg–Zn–Y–Zr alloy. Acta Mater 56:985–994

    Article  Google Scholar 

  6. Chapetti MD, Tagawa T, Miyata T (2003) Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions. Mater Sci Eng A 356:236–244

    Article  Google Scholar 

  7. Liu WC, Dong J, Zhang P, Korsunsky AM, Song X, Ding WJ (2011) Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions. Mater Sci Eng A 528:5935–5944

    Article  Google Scholar 

  8. Li ZM, Fu PH, Peng LM, Becker EP, Wu GH (2013) Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Mater Sci Eng, A 565:250–257

    Article  Google Scholar 

  9. Cáceres CH, Poole WJ, Bowles AL, Davidson CJ (2005) Section thickness, macrohardness and yield strength in high-pressure diecast magnesium alloy AZ91. Mater Sci Eng A 402:269–277

    Article  Google Scholar 

  10. Liu ZJ, Wu GH, Liu WC, Pang S, Ding WJ (2012) Effect of heat treatment on microstructures and mechanical properties of sand-cast Mg–4Y–2Nd–1Gd–0.4Zr magnesium alloy. T Nonferr Metal Soc 22:1540–1548

    Article  Google Scholar 

  11. Dunlop G, Bettles CJ, Griffiths JR et al (2003) The effect of grain size on the bolt load retention behaviours of AMC-SC1. In: Kainer KU (ed) The 6th International Conference Magnesium Alloys and Their Applications. Wolfsburg, Germany, pp 100–105

    Google Scholar 

  12. Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N (2006) Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Mater Sci Eng A 434:131–140

    Article  Google Scholar 

  13. Fu PH, Peng LM, Jiang HY, Chang JW, Zhai CQ (2008) Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt%) alloy. Mater Sci Eng A 486:183–192

    Article  Google Scholar 

  14. Fu PH, Peng LM, Jiang HY, Ma L, Zhai CQ (2008) Chemical composition optimization of gravity cast Mg–yNd–xZn–Zr alloy. Mater Sci Eng A 496:177–188

    Article  Google Scholar 

  15. Li ZM, Fu PH, Peng LM, Wang YX, Jiang HY (2013) Strengthening mechanisms in solution treated Mg–yNd–zZn–xZr alloy. J Mater Sci 48:6367–6376. doi:10.1007/s10853-013-7436-0

    Article  Google Scholar 

  16. Li ZM, Luo AA, Wang QG, Peng LM, Fu PH, Wu GH (2013) Effects of grain size and heat treatment on the tensile properties of Mg–3Nd–0.2Zn (wt%) magnesium alloys. Mater Sci Eng A 564:450–460

    Article  Google Scholar 

  17. Wang QG (2003) Microstructure effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A 34:2887–2899

    Article  Google Scholar 

  18. Li ZM, Fu PH, Peng LM, Wang YX, Jiang HY, Wu GH (2013) Comparison of high cycle fatigue behaviors of Mg–3Nd–0.2Zn–Zr alloy prepared by different casting processes. Mater Sci Eng A 579:170–179

    Article  Google Scholar 

  19. Fu PH, Peng LM, Jiang HY, Zhai CQ, Gao X, Nie JF (2007) Zr-containing precipitations in Mg–3 wt%Nd–0.2 wt%Zn–0.4 wt%Zr alloy during solution treatment at 540 °C. Mater Sci Forum 546–549:97–100

    Article  Google Scholar 

  20. Bettles CJ, Gibson MA, Zhu SM (2009) Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy. Mater Sci Eng A 505:6–12

    Article  Google Scholar 

  21. Sha G, Zhu HM, Liu JW, Luo CP, Liu ZW, Ringer SP (2012) Hydrogen-induced decomposition of Zr-rich cores in an Mg−6Zn−0.6Zr−0.5Cu alloy. Acta Mater 60:5615–5625

    Article  Google Scholar 

  22. Hisa M, Barry JC, Dunlop GL (2002) New type of precipitate in Mg-rare-earth alloys. Phil Magn 82:497–510

    Article  Google Scholar 

  23. Basquin OH (1910) The exponential law of endurance tests. Proc ASTM 10:625–630

    Google Scholar 

  24. Man J, Obrtlik K, Blochwitz C, Polak J (2002) Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Mater 50:3767–3780

    Article  Google Scholar 

  25. Polak J, Man J, Vystavel T, Petrenec M (2009) The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Mater Sci Eng A 517:204–211

    Article  Google Scholar 

  26. Robson JD, Stanford N, Barnett MR (2011) Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Mater 59:1945–1956

    Article  Google Scholar 

  27. Avedesian MM, Baker H (1999) Magnesium and magnesium Alloys. ASM, USA

    Google Scholar 

  28. Shiozawa K, Kashiwagi T, Murai T, Takahashi T (2010) Fatigue behaviour and fractography of extruded AZ80 magnesium alloys in very high cycle regime. Procedia Eng 2:183–191

    Article  Google Scholar 

  29. Liu WC, Dong J, Zhang P, Yao ZY, Zhai CQ, Ding WJ (2009) High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J Mater Sci 44:2916–2924. doi:10.1007/s10853-009-3385-z

    Article  Google Scholar 

  30. Gao X, Nie JF (2007) Characterization of strengthening precipitate phases in a Mg–Zn alloy. Scripta Mater 56:645–648

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51201103). The authors are grateful to Prof. Wengjiang Ding (SJTU), Dr. Qigui Wang (GM) and Dr. Alan. Luo (GM) for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penghuai Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Fu, P., Li, Z. et al. High cycle fatigue properties of cast Mg–xNd–0.2Zn–Zr alloys. J Mater Sci 49, 7105–7115 (2014). https://doi.org/10.1007/s10853-014-8417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8417-7

Keywords

Navigation