Skip to main content
Log in

Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly(amide-imide) nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, three-dimensional (3D) nanohybrids with excellent properties were prepared by the simple combination of 1D carbon nanotubes (CNTs) and 2D MgAl-layered double hydroxides (LDHs). An optically active amino acid containing poly(amide-imide) was prepared by direct polycondensation reaction of N-trimellitylimido-l-alanine and 4,4′-diaminodiphenyl methane under green condition in molten tetra-n-butylammonium bromide. PAI/LDH-CNT nanocomposites containing 2, 4, and 8 wt% LDH-CNT were prepared via a simple and an effective ultrasonic method. The presence of CNT in the interlayer space of LDH was confirmed by thermogravimetry analysis, Fourier transformed infrared spectroscopy, and X-ray diffraction techniques. The homogeneous dispersion of nanofillers in the PAI matrix was observed by field emission scanning electron microscopy and transmission electron microscopy. The obtained results revealed the coexistence of exfoliated and intercalated modified LDH-CNT in the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  2. Mallakpour S, Hatami M (2012) Production and evaluation of the surface properties of chiral poly(amide-imide)/TiO2 nanocomposites containing l-phenylalanine units. Prog Org Coat 74:564–571

    Article  Google Scholar 

  3. Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. J Chem Mater 12:1260–1267

    Article  Google Scholar 

  4. Lu N, Lu X, Jin X, Lu C (2007) Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym Int 56:138–143

    Article  Google Scholar 

  5. Chekin F, Raoof JB, Abd Hamid SB (2012) Fabrication of chitosan-multiwall carbon nanotube nanocomposite containing ferri/ferrocyanide: application for simultaneous detection of d-penicillamine and tryptophan. J Chin Chem Soc 59:1461–1467

    Article  Google Scholar 

  6. Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28

    Article  Google Scholar 

  7. Brichka SY, Prikhod’ko GP, Brichka AV, Kislii YuA (2004) Synthesis of bimodified carbon nanotubes: a nanocomposite material. Inorg Mater 40:1276–1279

    Article  Google Scholar 

  8. Boucetta HA, Al-Jamal KT, Müller KH, Li S, Porter AE, Eddaoudi A, Prato M, Bianco A, Kostarelos K (2011) Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small 7(22):3230–3238

    Article  Google Scholar 

  9. Mallakpour S, Zadehnazari A (2013) Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth Met 169:1–11

    Article  Google Scholar 

  10. Zheng J, Zhang Q, He X, Gao M, Ma X, Li G (2012) Nanocomposites of carbon nanotube (CNTs)/CuO with high sensitivity to organic volatiles at room temperature. Procedia Eng 36:235–245

    Article  Google Scholar 

  11. Xu RX, Yu XY, Gao C, Liu JH, Compton RG, Huang XJ (2013) Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg–Al-layered double hydroxides to detect Cd(II). Analyst 138(6):1812–1820

    Article  Google Scholar 

  12. Moyo L, Focke WW, Heidenreich D, Labuschagne FJWJ, Radusch H-J (2013) Properties of layered double hydroxide micro- and nanocomposites. Mater Res Bull 48:1218–1227

    Article  Google Scholar 

  13. Lv F, Wu Y, Zhang Y, Shang JK, Chu P (2012) Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites. J Mater Sci 47:2033–2039. doi:10.1007/s10853-011-6003-9

    Article  Google Scholar 

  14. Huang Z, Wua P, Lu Y, Wang X, Zhu N, Dang Z (2013) Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study. J Hazard Mater 246:70–78

    Article  Google Scholar 

  15. Beleke AB, Higuchi E, Inoue H, Mizuhata M (2013) Effects of the composition on the properties of nickelealuminum layered double hydroxide/carbon (NieAl LDH/C) composite fabricated by liquid phase deposition (LPD). J Power Sources 225:215–220

    Article  Google Scholar 

  16. Tao Q, Yuan J, Frost RL, He H, Yuan P, Zhu J (2009) Effect of surfactant concentration on the stacking modes of organo-silylated layered double hydroxides. Appl Clay Sci 45:262–269

    Article  Google Scholar 

  17. Hsueh HB, Chen CY (2003) Preparation and properties of LDHs/polyimide nanocomposites. Polymer 44:1151–1161

    Article  Google Scholar 

  18. Zhao MQ, Zhang Q, Huang JQ, Wei F (2012) Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides-Properties, Synthesis, and Applications. Adv Funct Mater 22:675–694

    Article  Google Scholar 

  19. Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP (2012) Layered double hydroxides supported on multi-walled carbon nanotubes: preparation and CO2 adsorption characteristics. J Mater Chem 22:13932–13940

    Article  Google Scholar 

  20. Wang H, Xiang X, Li F (2010) Hybrid ZnAl-LDH/CNTs nanocomposites: noncovalent assembly and enhanced photodegradation performanceMater. Interfaces Electrochem Phenomena 56:768–778

    Google Scholar 

  21. Toth V, Sipiczki M, Bugris V, Kukovecz A, Konya Z, Sipos P, Palinko I (2014) Synthesis and properties of CaAl-layered double hydroxide (CaAl-LDH) of the hydrocalumite type. Chem Pap 68:633–637

    Article  Google Scholar 

  22. Yang J, Yu C, Fan X, Ling Z, Qiu J, Gogotsi Y (2013) Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J Mater Chem A 1:1963–1968

    Article  Google Scholar 

  23. Mallakpour S, Zadehnazari A (2012) Simple and efficient microwave assisted polycondensation for preparation of chiral poly(amide–imide)s having pendant phenol moiety. Polym Sci B 54:314–322

    Google Scholar 

  24. Mallakpour S, Dinari M (2011) Progress in synthetic polymers based on natural amino Acids. J Macromol Sci A 48:644–679

    Article  Google Scholar 

  25. Mallakpour S, Banihassan K, Sabzalian MR (2013) Novel bioactive chiral poly(amide–imide)s containing different amino acids linkages: studies on synthesis, characterization and biodegradability. J Polym Environ 21:568–574

    Article  Google Scholar 

  26. Chang Q, Zhu L, Luo Z, Lei M, Zhang S, Tang H (2011) Sono-assisted preparation of magnetic magnesium–aluminum layered double hydroxides and their application for removing fluoride. Ultrason Sonochem 18:553–561

    Article  Google Scholar 

  27. Katiyar V, Gerds N, Bender Koch C, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95:2563–2573

    Article  Google Scholar 

  28. Ramaraj B, Jaisankar SN (2008) Thermal and morphological properties of poly(vinyl alcohol) and layered double hydroxide (LDH) nanocomposites. Polym Plast Technol Eng 47:733–738

    Article  Google Scholar 

  29. Chaara D, Bruna F, Ulibarri MA, Draoui K, Barriga C, Pavlovic I (2011) Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides. J Hazard Mater 196:350–359

    Google Scholar 

  30. Mallakpour S, Behranvand V (2014) Surface treatment of nano ZnO using 3,4,5,6-tetrabromo-N-(4-hydroxy-phenyl)-phthalamic acid as novel coupling agent for the preparation of poly(amide–imide)/ZnO nanocomposites. Colloid Polym Sci. doi:10.1007/s00396-014-3264-2

    Google Scholar 

  31. Kameda T, Saito M, Umetsu Y (2006) Preparation and characterisation of Mg–Al layered double hydroxides intercalated with 2-naphthalene sulphonate and 2,6-naphthalene disulphonate. Mater Trans 47(3):923–930

    Article  Google Scholar 

  32. Reny Costa F, Leuteritz A, Wagenknecht U, Jehnichen D, Häußler L, Heinrich G (2008) Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and characterization. Appl Clay Sci 38:153–164

    Article  Google Scholar 

  33. Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide–imide) composites containing a pendant dopamine moiety. Carbon 56:27–37

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the partial financial support from the Research Affairs Division at Isfahan University of Technology (IUT), Isfahan and National Elite Foundation (NEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Dinari, M. & Behranvand, V. Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly(amide-imide) nanocomposites. J Mater Sci 49, 7004–7013 (2014). https://doi.org/10.1007/s10853-014-8405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8405-y

Keywords

Navigation