Skip to main content
Log in

Exfoliation and dispersion of nano-sized modified-LDH particles in poly(amide-imide)s containing N-trimellitylimido-l-methionine and 3,5-diamino-N-(pyridin-3-yl)benzamide linkages

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study describes the synthesis and characterization of nanocomposite materials built from the assembly of organic polymer and two-dimensional host materials of organo-modified layered double hydroxide (LDH). Organo-modified LDH was synthesized in one step from the co-precipitation reaction of the Al(NO3)3.9H2O, Mg(NO3)2.6H2O and bioactive N-trimellitylimido-l-methionine under ultrasonic irradiation. The X-ray diffraction (XRD) results of the organo-modified LDH show that the dianion is intercalated in the interlayer region of Mg–Al LDH and enlarges the interlayer distance. An optically active and organo-soluble poly(amide-imide) (PAI) was prepared by the direct step-growth polymerization reaction of l-methionine based diacid with 3,5-diamino-N-(pyridin-3-yl) benzamide in the presence of molten tetrabutylammonium bromide as a green solvent. Different nanocomposites of organo-modified LDH and chiral PAI were synthesized via solution intercalation method. The microstructures and thermal stabilities of the obtained LDH and nanocomposite materials were investigated by XRD, field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectra, transmission electron microscopy (TEM) and thermogravimetry (TGA) techniques. The FE-SEM, TEM and XRD results revealed a coexistence of exfoliated and intercalated modified LDH in polymer matrix. TGA results showed improved thermal properties in comparison with the neat PAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen W, Qu BJ (2003) Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem Mater 15:3208–3213

    Article  CAS  Google Scholar 

  2. Malinconico M, Laurienzo P (2007) Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone. Biomacromolecules 8:773–779

    Article  Google Scholar 

  3. Gonçalve LFFF, Silva CJR, Kanodarwala FK, Stride JA, Pereira MR, Gomes MJM (2013) Synthesis and characterization of organic–inorganic hybrid materials prepared by sol-gel and containing ZnxCd 1 xS nanoparticles prepared by a colloidal method. J Luminescence 144:203–211

    Article  Google Scholar 

  4. Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115

    Article  Google Scholar 

  5. Valera-Zaragoza M, Rivas-Vázquez LP, Ramírez-Vargas E, Sánchez-Valdes S, Ramos-deValle LF, Medellín-Rodríguez FJ (2013) Influence of morphology on the dynamic mechanical characteristics of PP-EP/EVA/organoclay nanocomposites. Compos B 55:505–512

    Google Scholar 

  6. Alena K, Dagmar M, Francois GJ, Miroslav S (2013) Polymer/clay nanocomposites and their gas barrier properties. Polym Compos 34:1418–1424

    Article  CAS  Google Scholar 

  7. Yuan Y, Shi W (2011) Preparation and properties of UV-cured acrylated silane intercalated polymer/LDH nanocomposite. Mater Res Bull 46:124–129

    Article  CAS  Google Scholar 

  8. Wicklein B, Aranda P, Ruiz-Hitzky E, Darder M (2013) Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. Mater Chem B 1:2911–2920

    Article  CAS  Google Scholar 

  9. Lv F, Wu Y, Zhang Y, Shang J, Chu PK (2012) Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites. J Mater Sci 47:2033–2039

    Article  CAS  Google Scholar 

  10. Evans DG, Duan X (2006) Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem Commun 2006:485–496

    Article  Google Scholar 

  11. Chen Y, Chia JYH, Su ZC, Tay TE, Tan VBC (2013) Mechanical characterization of interfaces in epoxy-clay nanocomposites by molecular simulations. Polymer 54:766–773

    Article  CAS  Google Scholar 

  12. Usuki A, Hasegawa N, Kato M (2005) Polymer-clay nanocomposites. Adv Polym Sci 179:135–195

    Article  CAS  Google Scholar 

  13. Mallakpour S, Dinari M (2012) Surface treated montmorillonite: structural and thermal properties of chiral poly(amide-imide)/organoclay bionanocomposites containing natural amino acids. J Inorg Organomet Polym 22:929–937

    Article  CAS  Google Scholar 

  14. Choudary BM, Chowdari NS, Jyothi K, Kantam ML (2002) Catalytic asymmetric dihydroxylation of olefins with reusable OsO42 on ion-exchangers: the scope and reactivity using various cooxidants. J Am Chem Soc 124:5341–5349

    Article  CAS  Google Scholar 

  15. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  16. Hang TTX, Truc TA, Duong NT, Vu PG, Hoang T (2012) Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides. Appl Clay Sci 67–68:18–25

    Article  Google Scholar 

  17. Hu H, Wang XB, Xu SL, Yang WT, Xu FJ, Shen J, Mao C (2012) Preparation and evaluation of well-defined hemocompatible layered double hydroxide-poly(sulfobetaine) nanohybrids. J Mater Chem 22:15362–15369

    Article  CAS  Google Scholar 

  18. Zhao MQ, Zhang Q, Huang JQ, Wei F (2012) Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv Funct Mater 22:675–694

    Article  CAS  Google Scholar 

  19. Quan ZL, Zhang DM, Hou WG (2011) Preparation and inhibition performance of aspartic acid intercalated ZnAl layered double hydroxides. Corros Sci Protect Technol 23:151–154

    CAS  Google Scholar 

  20. Wang Q, O’Hare D (2012) recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  Google Scholar 

  21. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  22. Kameda T, Hoshi K, Yoshioka T (2013) Preparation of Cu-Al layered double hydroxide intercalated with ethylenediaminetetraacetate by coprecipitation and its uptake of rare earth ions from aqueous solution. Solid State Sci 17:28–34

    Article  CAS  Google Scholar 

  23. Labajos FM, Rives V, Ulibarri MA (1992) Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg–Al hydrotalcite-like materials. J Mater Sci 27:1546–1552

    Article  CAS  Google Scholar 

  24. Chandrappa GT, Steunou N, Cassaignon S, Bauvais C, Livage J (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal Today 78:85–89

    Article  CAS  Google Scholar 

  25. Lin Y, Wang G (2012) Recent advances in the preparation of layered double hydroxides. Recent Pat Nanotechnol 6:169–173

    Article  CAS  Google Scholar 

  26. Tao Q, Zhang Y, Zhang X, Peng Y, He H (2006) Synthesis and characterization of layered double hydroxides with a high aspect ratio. J Solid State Chem 179:708–715

    Article  CAS  Google Scholar 

  27. Oriakhi CO, Farr IV, Lerner MM (1996) Incorporation of poly (acrylic acid), poly (vinylsulfonate) and poly (styrenesulfonate) within layered double hydroxides. J Mater Chem 6:103–107

    Article  CAS  Google Scholar 

  28. Illaik A, Taviot-Guého C, Lavis J, Commereuc S, Verney V, Leroux F (2008) Unusual polystyrene nanocomposite structure using emulsifler-modified layered double hydroxide as nanofiller. Chem Mater 20:4854–4860

    Article  CAS  Google Scholar 

  29. Mallakpour S, Dinari M (2013) Facile synthesis of nanocomposite materials by intercalating an optically active poly(amide-imide) enclosing (L)-isoleucine moieties and azobenzene side groups into a chiral layered double hydroxide. Polymer 54:2907–2916

    Article  CAS  Google Scholar 

  30. Wang Q, Undrell JP, Gao Y, Cai G, Buffet JC, Wilkie CA, O’Hare D (2013) Synthesis of flame-retardant polypropylene/LDH-borate nanocomposites. Macromolecules 46:6145–6150

    Article  CAS  Google Scholar 

  31. Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxie. Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  32. Taviot-Gueho C, Leroux F (2006) In situ polymerization and intercalation of polymers in layered double hydroxides. Struct Bond 119:121–159

    Article  CAS  Google Scholar 

  33. Domb AJ (1990) Biodegradable polymers derived from amino acids. Biomaterials 11:686–689

    Article  CAS  Google Scholar 

  34. Mallakpour S, Dinari M (2010) Environmentally friendly methodology for preparation of amino acid containing polyamides. J Polym Environ 18:705–713

    Article  CAS  Google Scholar 

  35. Mallakpour S, Dinari M (2011) Progress in synthetic polymers based on natural amino acids. J Macromol Sci Part A 48:644–679

    Article  CAS  Google Scholar 

  36. Cianga L (2003) Synthesis and characterization of optically active polymers containing azo groups and (l)-α-amino acid moieties. Eur Polym J 39:2271–2282

    Article  CAS  Google Scholar 

  37. Unal H, Kurt M, Mimaroglu A (2012) Tribological performance of industrial polyamide-imide and its composite under different cooling conditions. J Polym Eng 32:201–206

    CAS  Google Scholar 

  38. Mallakpour S, Ayatollahi H (2013) High-performance nanostructure chiral poly(amide–imide)s containing benzamide and amino acid linkages: preparation, characterization and ultrasonic effect on the morphology. High Perform Polym 25:551–558

    Article  Google Scholar 

  39. Mallakpour S, Dinari M (2013) Straightforward and green method for the synthesis of nanostructure poly(amide-imide)s-containing benzimidazole and amino acid moieties by microwave irradiation. Polym Bull 70:1049–1064

    Article  CAS  Google Scholar 

  40. Kanan S, Swamy CS (1992) Synthesis and physicochemical characterization of cobalt aluminium hydrotalcite. J Mater Sci Lett 11:1585–1587

    Article  Google Scholar 

  41. Mallakpour S, Dinari M (2015) Intercalation of amino acid containing chiral dicarboxylic acid between Mg–Al layered double hydroxide. J Therm Anal Calorim 119:1123–1130

    Article  CAS  Google Scholar 

  42. Krevelen DWV, Hoftyze PJ (1976) Properties of polymers, 3rd edn. Amsterdam, Elsevier

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. The partial support of Iran Nanotechnology Initiative Council (INIC), and National Elite Foundation (NEF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinari, M., Mallakpour, S. Exfoliation and dispersion of nano-sized modified-LDH particles in poly(amide-imide)s containing N-trimellitylimido-l-methionine and 3,5-diamino-N-(pyridin-3-yl)benzamide linkages. Polym. Bull. 72, 977–991 (2015). https://doi.org/10.1007/s00289-015-1318-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1318-3

Keywords

Navigation