Skip to main content
Log in

Production of NiAl-layered double hydroxide intercalated with bio-safe amino acid containing organic dianion and its utilization in formation of LDH/poly(amide-imide) nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel Ni-Al layered double hydroxide (LDH) intercalated with bio-active amino acid containing dicarboxylate was synthesized via co-precipitation reaction of Ni(NO3)2. 6H2O, Al(NO3)3. 9H2O and N,N′-(pyromellitoyl)-bis-L-phenylalanine under ultrasonic irradiation. The X-ray diffraction (XRD) results of the organo-modified LDH show that the dianion are intercalated in the interlayer region of LDH and expanded the interlayer distance. An optically active and organo-soluble poly(amide-imide) was prepared by the direct step-growth polymerization of L-phenylalanine based diacid and 3,5-diamino-N-(4-hydroxyphenyl)benzamide in the presence of molten tetra-butylammonium bromide as a green solvent. Then nanocomposite materials built from the assembly of L-phenylalanine amino acid containing polymer and two-dimensional organo-modified LDH were synthesized by solution intercalation method. The structures and morphology of the synthesized materials were investigated by XRD, Fourier transform infrared spectra, field emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM) techniques. The thermal properties of the modified LDH and the resulting nanocomposites were studied by thermogravimetry analysis techniques and the results showed improved in the thermal properties of the nanocomposites in comparison with the neat polymer. The FE-SEM, TEM and XRD results revealed a coexistence of exfoliated and intercalated modified LDH in polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rives V (2001) Layered double hydroxides: present and future. Nova, Huntington

    Google Scholar 

  2. Braterman PS, Xu ZP, Yarberry F (2004) Layered double hydroxides. In: Auer-bach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Marcel Dekker, Inc., New York, pp 373–474

    Google Scholar 

  3. Evans DG, Slade RCT (2006) Structural aspects of layered double hydroxides. Struct Bond Springer Berlin Heidelb 119:1–87

    CAS  Google Scholar 

  4. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Angew Chem Int Ed 39:4041–4045

    Article  Google Scholar 

  5. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Chem Mater 14:4286–4291

    Article  CAS  Google Scholar 

  6. Zimmermann A, Silvia J, Sonia FZ, Wypych F (2013) J Polym Res 20:224

    Article  Google Scholar 

  7. Tonelli D, Scavetta E, Giorgetti M (2013) Anal Bioanal Chem 405:603–614

    Article  CAS  Google Scholar 

  8. Wang Q, Tang SVY, Lester E, O’Hare D (2013) Nanoscale 5:114–117

    Article  CAS  Google Scholar 

  9. Wei Z, Chen G, Shi Y, Song P, Zhan M, Zhang W (2012) J Polym Res 19:9930

    Article  Google Scholar 

  10. Zhao C, Peng G, Liu B, Jiang Z (2011) J Polym Res 18:1971

    Article  CAS  Google Scholar 

  11. Segal SR, Anderson KB, Carrado KA, Marshall CL (2002) Appl Catal A 231:215–226

    Article  CAS  Google Scholar 

  12. Qi C, Amphlett JC, Peppley BA (2006) Appl Catal A 302:237–243

    Article  CAS  Google Scholar 

  13. Qi C, Amphlett JC, Peppley BA (2007) J Power Sources 171:842–849

    Article  CAS  Google Scholar 

  14. Wang L, Lu Z, Li F, Duan X (2008) Ind Eng Chem Res 47:7211–7218

    Article  CAS  Google Scholar 

  15. Coq B, Tichit D, Ribet S (2000) J Catal 189:117–128

    Article  CAS  Google Scholar 

  16. Hua M, Ji X, Lei L, Lu X (2013) J Alloys Compd 578:17–25

    Article  Google Scholar 

  17. Wang H, Xiang X, Li F (2010) J Mater Chem 20:3944–3952

    Article  CAS  Google Scholar 

  18. Zhang X, Li SP (2013) Appl Surf Sci 274:158–164

    Article  CAS  Google Scholar 

  19. Qi FL, Zhang XQ, Li SP (2013) J Phy Chem Solids 74:1101–1108

    Article  CAS  Google Scholar 

  20. Mallakpour S, Dinari M, Behranvand V (2013) RSC Adv 3:23303–23308

    Article  CAS  Google Scholar 

  21. Martínez AB, Realinho V, Antunes M, Maspoch ML, Velasco JI (2011) Ind Eng Chem Res 50:5239–5247

    Article  Google Scholar 

  22. Matusinovic Z, Wilkie CA (2012) J Mater Chem 22:18701–18704

    Article  CAS  Google Scholar 

  23. Wang DY, Das A, Leuteritz A, Mahaling RN, Jehnichen D, Wagenknecht U, Heinrich G (2012) RSC Adv 2:3927–3933

    Article  CAS  Google Scholar 

  24. Wang Q, Zhang X, Wang CJ, Zhu J, Guo Z, O’Hare D (2012) J Mater Chem 22:19113–19121

    Article  CAS  Google Scholar 

  25. Lonkar SP, Leuteritz A, Heinrich G (2013) RSC Adv 3:1495–1501

    Article  CAS  Google Scholar 

  26. Mallakpour S, Dinari M (2013) Polymer 54:2907–2916

    Article  CAS  Google Scholar 

  27. Liaw DJ, Chen WH (2006) Polym Degrad Stab 91:1731–739

    Article  CAS  Google Scholar 

  28. Menahem T, Mastai Y (2006) J Appl Polym Sci 44:3009–017

    Article  CAS  Google Scholar 

  29. Mallakpour S, Asadi P, Sabzalian MR (2011) Amino Acids 41:1215–1222

    Article  CAS  Google Scholar 

  30. Mallakpour S, Dinari M (2011) J Macromol Sci A Pure Appl Chem 48:644–679

    Article  CAS  Google Scholar 

  31. Mallakpour S, Hatami M (2012) Prog Org Coat 74:564–571

    Article  CAS  Google Scholar 

  32. Leroux F, Adachi-Pagano M, Intissar M, Chauviere S, Foranoand C, Besse J (2001) J Mater Chem 11:105–112

    Article  CAS  Google Scholar 

  33. Jitianu M, Gunness DC, Aboagye DE, Zaharescu M, Jitianu A (2013) Mater Res Bull 48:1864–1873

    Article  CAS  Google Scholar 

  34. Hausslerand L, Heinrich G (2008) Appl Clay Sci 38:153–164

    Article  Google Scholar 

  35. Dinari M, Mallakpour S (2014) J Polym Res 21:350–357

    Article  Google Scholar 

  36. Millange F, Walton RI, O’Hare D (2000) J Mater Chem 10:1713–1720

    Article  CAS  Google Scholar 

  37. Wu G, Wang L, Evans DG, Duan X (2006) Eur J Inorg Chem 3185–3196

  38. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier scientific publishing, New York

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the Research Affairs Division at Isfahan University of Technology (IUT), Isfahan. The partial support of Iran Nanotechnology Initiative Council (INIC), and National Elite Foundation (NEF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Dinari, M. & Nabiyan, A. Production of NiAl-layered double hydroxide intercalated with bio-safe amino acid containing organic dianion and its utilization in formation of LDH/poly(amide-imide) nanocomposites. J Polym Res 22, 11 (2015). https://doi.org/10.1007/s10965-015-0663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0663-0

Keywords

Navigation