Skip to main content
Log in

An analytical study on cracking directions and damage in thermal fatigue crazing subjected to variable amplitude loadings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the effects of biaxial mean stress, mainly contributed by the weld residual stress, and thermal loading conditions on cracking directions and damage in high cycle thermal fatigue crazing subjected to variable amplitude loadings are investigated by a combined analytical and computational approach. The cracking directions are related to the orientation of the critical plane defined by the maximum damage. Analytical solutions of the critical plane orientation under constant amplitude biaxial tension/compression loadings are first derived and then employed to study the effects of biaxial mean stress on the critical plane orientation. The critical plane orientation appears to strongly depend on the dominant direction defined by the larger maximum stress. The developed analytical solution of the critical plane orientation and the analytical solution of the thermal stress from the literature are employed to study the effects of thermal loading conditions on the critical plane orientation. The critical plane orientation does not seem to significantly depend on the frequency, the amplitude and the mean value of the fluid temperature fluctuations, and the heat transfer film coefficient between the fluid and the pipe wall. The critical plane orientation under variable amplitude loadings is also studied, and an approximate solution is proposed for convenient engineering applications. The critical plane orientations are used to partially explain the observed cracking directions in the high cycle thermal fatigue crazing in the old residual heat removal system of a nuclear power plant. Finally, the effects of biaxial mean stress and thermal loading conditions on the fatigue crack initiation life are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a, k :

Material constants which represent fatigue properties

B :

Dimensionless Biot’s number

\( C_{\rm M} ,\,C_{\rm F} ,\,C_{j} \) :

Auxiliary functions \( \left( {j = M,\,F} \right) \) for critical angles

C p :

Specific heat capacity of the pipe wall material

d :

Thermal diffusivity in the pipe wall

D :

Total fatigue damage

D imax :

Maximum damage of the cycle i

e :

Thickness of the pipe wall

E :

Young’s modulus

EDF:

Formerly known as Electricity of France

F :

Dimensionless Fourier’s number

f :

Frequency of the fluid temperature fluctuations

f s :

Stress-life fatigue curve (S–N curve)

f ε :

Strain-life fatigue curve (ε–N curve)

\( \overrightarrow {F} \) :

Stress vector acting on a plane

H :

Heat-transfer film coefficient between the fluid and the pipe wall

i :

Dominant direction

\( \overrightarrow {n} \) :

Unit normal vector of a plane passing through a material point

\( n_{x} ,\,n_{y} ,\,n_{z} \) :

Components of a unit normal vector \( \overrightarrow {n} \)

n t :

Total number of elementary cycle

\( \overrightarrow {N} \) :

Normal stress vector acting on a plane

\( N_{\hbox{max} } \) :

Maximum normal stress during a loading cycle

\( N_{f} \) :

Total fatigue life

\( N_{f}^{i} \) :

Fatigue life for an elementary cycle \( i\,(i = 1,\,2, \ldots ,n_{t} ) \)

\( R_{\text{int}} ,\,R_{\text{ext}} \) :

Inner and outer radii of the pipe

S y :

Yield stress

t, t 0 :

Time and the period of the constant amplitude loading

T :

Temperature in the pipe wall

T f :

Fluid temperature

T m :

Mean value of the fluid temperature fluctuations

\( \bar{x} \) :

Normalized location along the pipe wall thickness

α i :

Mean stress parameter in the dominant direction \( i\,\left( {i = x,\,y} \right) \)

α T :

Thermal expansion coefficient of the pipe wall material

α x , α y :

Mean stress parameters in the x direction and in the y direction

β 2, β i :

Ratio of stress amplitudes

ε eq :

Equivalent crack initiation parameter for the modified Fatemi–Socie’s criterion

φ i x :

Critical angle associated with cycle i

φ x , φ y , φ z :

Direction angles of a unit normal vector \( \vec{n} \)

λ T :

Thermal conductivity in the pipe wall

v :

Poisson’s ratio

ρ :

Density of the pipe wall material

σ eq :

Equivalent crack initiation parameter for the modified Matake’s criterion

σ a , σ 1 a , σ 2 a , σ i a :

Stress amplitude, the superscript represents the cycle

σ x,m , σ x,max, σ y,m , σ y,max :

Mean stress and maximum stress in the x and y directions

σ r , σ θ , σ z :

The radial, circumferential and axial thermal stresses in the pipe wall

\( \vec{\tau } \) :

Shear stress vector acting on a plane

Δ:

A candidate plane passing through a material point

ΔT :

Amplitude of the fluid temperature fluctuations

Δγ, Δγmax :

Shear strain range, maximum shear strain range:

Δτ:

Shear stress range

References

  1. Chapuliot S, Gourdin C, Payen T, Magnaud JP, Monavon A (2005) Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee. Nucl Eng Des 235:575–596

    Article  Google Scholar 

  2. Haddar N, Fissolo A, Maillot V (2005) Thermal fatigue crack networks: an computational study. Int J Solids Struct 42:771–788

    Article  Google Scholar 

  3. Maillot V, Fissolo A, Degallaix G, Degallaix S (2005) Thermal fatigue crack networks parameters and stability: an experimental study. Int J Solids Struct 42:759–769

    Article  Google Scholar 

  4. Stephan JM, Curtit F (2002) High-cycle analytical thermal fatigue tests on pipe structures. ASME 2002 Prssure Vessels and Piping Conference (PVP 2002), Vancouver, BC, Canada. PVP2002-1374

  5. Cipière MF, Duff JA (2002) Thermal fatigue experience in French piping: influence of surface condition and weld local geometry. Weld World 46:23–27

    Article  Google Scholar 

  6. Le Duff JA, Tacchini B, Stephan JM, Tampigny R, Fissolo A, Vincent L (2011) High cycle thermal fatigue issues in RHRS mixing tees and thermal fatigue test on a representative 304 L mixing zone. ASME 2011 Pressure Vessels & Piping Division Conference (PVP 2011), Baltimore, Maryland, USA. PVP2011-57951

  7. Blondet E, Faidy C (2002) High cycle thermal fatigue in French PWR. 10th International Conference on Nuclear Engineering (ICONE 10), Arlington, Virginia, USA. ICONE10-22762

  8. Taheri S (2007) Some advances on understanding of high cycle thermal fatigue crazing. Journal of Pressure Vessel Technology, Transactions of the ASME 129:400–410

    Article  Google Scholar 

  9. Bauerbach K, Vormwald M, Rudolph J (2009) Fatigue assessment of nuclear power plant components subjected to thermal cyclic loading. ASME 2009 Pressure Vessels and Piping Conference (PVP 2009), Prague, Czech. PVP2009-77450

  10. Hai Q, Wei Y, Jian L (2010) Numerical simulation of multiple cracking in ANSI 304 stainless steel under thermal fatigue. Int J Damage Mech 19:767–785

    Article  Google Scholar 

  11. Kamaya M, Taheri S (2008) A study on the evolution of crack networks under thermal fatigue loading. Nucl Eng Des 238:2147–2154

    Article  Google Scholar 

  12. Sudret B, Guede Z (2005) Probabilistic assessment of thermal fatigue in nuclear components. Nucl Eng Des 235:1819–1835

    Article  Google Scholar 

  13. Dahlberg M, Nilsson K-F, Taylor N, Faidy C, Wilke U, Chapuliot S, Kalkhof D, Bretherton I, Church M, Solin J, Catalano J (2007) Development of a european procedure for assessment of high cycle thermal fatigue in light water reactors: final report of the NESC-thermal fatigue project, EUR 22763 EN, Netherlands

  14. Metzner KJ, Wilke U (2005) European THERFAT project—thermal fatigue evaluation of piping system “Tee”-connections. Nucl Eng Des 235:473–484

    Article  Google Scholar 

  15. Stephan JM, Curtit F, Vindeirinho C, Taheri S, Akamatsu M, Peniguel C (2002) Evaluation of the risk of damages in mixing zones: EDF R&D programme. ASME 2002 Pressure Vessels and Piping Conference (PVP2002), Vancouver, BC, Canada. PVP2002-1328

  16. Stephan JM (2011) Numerical interpretation of the endurance test on FATHER mixing zone mock-up. ASME 2011 Pressure Vessels and Piping Conference (PVP 2011), Baltimore,Maryland,USA. PVP2011-57537

  17. Socie D (1993) Critical plane approaches for multiaxial faitgue damage assessment., Advances in Multiaxial FatigueASTM, Philadelphia, pp 7–36

    Google Scholar 

  18. Zhang W, Akid R (1997) Effect of biaxial mean stress on cyclic stress-strain response and behaviour of short fatigue cracks in a high strength spring steel. Fatigue Fract Eng Mater Struct 20:167–177

    Article  Google Scholar 

  19. Lei BM, Tran VX, Taheri S, Wan L, Zhou Y (2014) Submitted for publication. Effects of biaxial mean stress on the critical plane orientation under biaxial tension/compression fatigue loading conditions. Int J Fatigue (accepted for publication, April 2014)

  20. McDowell DL (1996) Basic issues in the mechanics of high cycle metal fatigue. Int J Fract 80:103–145

    Article  Google Scholar 

  21. Reis L, Li B, de Freitas M (2009) Crack initiation and growth path under multiaxial fatigue loading in structural steels. Int J Fatigue 31:1660–1668

    Article  Google Scholar 

  22. Socie D, Marquis G (2000) Multiaxial fatigue. Society of Automotive Engineers, Inc., Warrendale

    Book  Google Scholar 

  23. You BR, Lee SB (1996) A critical review on multiaxial fatigue assessments of metals. Int J Fatigue 18:235–244

    Article  Google Scholar 

  24. Musi S, Beaud F (2003) An analytical model for thermal fatigue crack initiation and propagation in mixing zones of piping systems. ASME 2003 Pressure Vessels and Piping Conference (PVP 2003), Cleveland, Ohio, USA. PVP2003-1997

  25. S.P.Timoshenko, J.N.G. (2004) Theory of elasticity, 3rd edn. McGraw-Hill Companies, Inc.

  26. Matake T (1977) Explanation on fatigue limit under combined stress. Bulletin of the Jsme-Japan Society of Mechanical Engineers 20:257–263

    Article  Google Scholar 

  27. Angles J, Taheri S, Papaconstantinou T (2005) High-cycle metal fatigue under multiaxial loading damage accumulation models applied to an industrial structure. 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China. SMiRT18-W101-4

  28. Tran VX (2013) Multiaxial criteria of priming in fatigue. Code_Aster Documentation R7.04.04. http://www.code-aster.org/V2/doc/default/en/man_r/r7/r7.04.04.pdf.

  29. Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11:149–165

    Article  Google Scholar 

  30. Colin J, Fatemi A, Taheri S (2011) Cyclic hardening and fatigue behavior of stainless steel 304L. Journal of Materials Science 46:145–154

    Article  Google Scholar 

  31. Shamsaei N, Fatemi A, Socie DF (2011) Multiaxial fatigue evaluation using discriminating strain paths. Int J Fatigue 33:597–609

    Article  Google Scholar 

  32. Sbitti A, Taheri S (2010) Crack arrest in high cycle thermal fatigue crazing. Nucl Eng Des 240:30–38

    Article  Google Scholar 

  33. Downing SD, Socie DF (1982) Simple rainflow counting algorithms. Int J Fatigue 4:31–40

    Article  Google Scholar 

  34. Wang CH, Brown MW (1996) Life prediction techniques for variable amplitude multiaxial fatigue—part 1: theories. Journal of Engineering Materials and Technology, Transactions of the ASME 118:367–370

    Article  Google Scholar 

  35. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20:9–34

    Article  Google Scholar 

  36. Miner MA (1945) Cumulative damage in fatigue. Journal of Applied Mechanics-Transactions of the ASME 12:A159–A164

    Google Scholar 

Download references

Acknowledgements

Financial support of this work from the EDF R&D is greatly appreciated. Helpful discussions with Jean-Christophe LE-ROUX, Remi MUNIER, and Gaelle LEOPOLD at EDF R&D are greatly appreciated. The use of existing functionalities and subroutines of Code_Aster for the computations of the critical plane orientation is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Xuan Tran.

Appendix

Appendix

The mathematical derivation process to obtain the analytical solution of the critical plane orientation consists of the following steps:

  1. (1)

    Consider the stress tensor \( {\varvec{\upsigma}} \) which represents the biaxial tension/compression stress state in the elementary cube as

    $$ {\varvec{\upsigma}}\left( t \right) = \left[ {\begin{array}{*{20}c} {\sigma_{x} \left( t \right)} & 0 & 0 \\ 0 & {\sigma_{y} \left( t \right)} & 0 \\ 0 & 0 & 0 \\ \end{array} } \right] $$
    (24)
  2. (2)

    Calculate the stress vector \( \overrightarrow {F} \) acting on the candidate plane Δ of the unit normal vector \( \vec{n} \) as

    $$ \overrightarrow {F} \left( {n_{x} ,n_{y} ,t} \right) = {\varvec{\upsigma}} \cdot \overrightarrow {n} = \left[ {\begin{array}{*{20}c} {\sigma_{x} \left( t \right)n_{x} } \\ {\sigma_{y} \left( t \right)n_{y} } \\ 0 \\ \end{array} } \right] $$
    (25)
  3. (3)

    Project the stress vector \( \overrightarrow {F} \) into a normal stress \( \overrightarrow {N} \) and a shear stress \( \overrightarrow {\tau } \) acting on the candidate plane Δ as

    $$ \overrightarrow {N} \left( {n_{x} ,n_{y} ,n_{z} ,t} \right) = \left( {\left( {\overrightarrow {F} } \right)^{\text{T}} \cdot \overrightarrow {n} } \right)\overrightarrow {n} = \left( {\sigma_{x} \left( t \right)n_{{_{x} }}^{2} + \sigma_{y} \left( t \right)n_{{_{y} }}^{2} } \right)\left[ {\begin{array}{*{20}c} {n_{x} } \\ {n_{y} } \\ {n_{z} } \\ \end{array} } \right] $$
    (26)
    $$ \overrightarrow {\tau } \left( {n_{x} ,n_{y} ,n_{z} ,t} \right) = \overrightarrow {F} - \overrightarrow {N} = \left[ {\begin{array}{*{20}c} {\sigma_{x} \left( t \right)n_{x} - \sigma_{x} \left( t \right)n_{{_{x} }}^{3} - \sigma_{y} \left( t \right)n_{x} n_{{_{y} }}^{2} } \\ {\sigma_{y} \left( t \right)n_{y} - \sigma_{x} \left( t \right)n_{{_{x} }}^{2} n_{y} - \sigma_{y} \left( t \right)n_{{_{y} }}^{3} } \\ { - \sigma_{x} \left( t \right)n_{{_{x} }}^{2} n_{z} - \sigma_{y} \left( t \right)n_{{_{y} }}^{2} n_{z} } \\ \end{array} } \right] $$
    (27)
  4. (4)

    Calculate the maximum normal stress \( N_{\hbox{max} } \) and the shear stress range \( \Delta \tau \) acting on the candidate plane Δ as

    $$ N_{\hbox{max} } \left( {n_{x} ,n_{y} } \right) = \mathop {\hbox{max} }\limits_{{t \in [0,t_{0} ]}} \left\| {\overrightarrow {N} \left( {n_{x} ,n_{y} ,n_{z} ,t} \right)} \right\| = \sigma_{x,\hbox{max} } n_{{_{x} }}^{2} + \sigma_{y,\hbox{max} } n_{{_{y} }}^{2} $$
    (28)
    $$ \begin{gathered} \Delta \tau \left( {n_{x} ,n_{y} } \right) = \mathop {\hbox{max} }\limits_{{i,j \in [0,t_{0} ]}} \left\| {\overrightarrow {\tau } \left( {n_{x} ,n_{y} ,n_{z} ,t = i} \right) - \overrightarrow {\tau } \left( {n_{x} ,n_{y} ,n_{z} ,t = j} \right)} \right\| \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = 2\sigma_{a} \sqrt {n_{{_{x} }}^{2} + n_{{_{y} }}^{2} - \left( {n_{{_{x} }}^{2} + n_{{_{y} }}^{2} } \right)^{2} } \; \hfill \\ \end{gathered} $$
    (29)

    Similarly, the strain vector can also be projected on the candidate plane. Note that an elastic material model is used. The shear strain range \( \Delta \gamma \) can be expressed as

    $$ \Delta \gamma \left( {n_{x} ,n_{y} } \right) = \frac{{2\left( {1 + \nu } \right)\sigma_{a} }}{E}\sqrt {n_{{_{x} }}^{2} + n_{{_{y} }}^{2} - \left( {n_{{_{x} }}^{2} + n_{{_{y} }}^{2} } \right)^{2} } $$
    (30)
  5. (5)

    Calculate the equivalent parameter σ eq of the modified Matake’s criterion and ε eq of the modified Fatemi–Socie’s criterion. Note that \( \sigma_{x,\hbox{max} } = \sigma_{a} \left( {\alpha_{x} + 1} \right) \) and \( \sigma_{y,\hbox{max} } = \sigma_{a} \left( {\alpha_{y} + 1} \right) \). By substituting Eqs. (28) and (29) into Eq. (3), the equivalent parameter of the modified Matake’s criterion can be written as

    $$ \sigma_{\rm eq} \left( {n_{x} ,n_{y} } \right) = \sigma_{a} \left\{ {\sqrt {n_{x}^{2} + n_{y}^{2} - \left( {n_{x}^{2} + n_{y}^{2} } \right)^{2} } + a \cdot \hbox{max} \left\{ {0,\left[ {\left( {1 + \alpha_{x} } \right)n_{x}^{2} + \left( {1 + \alpha_{y} } \right)n_{y}^{2} } \right]} \right\}} \right\} $$
    (31)

    Similarly, the equivalent parameter of the modified Fatemi–Socie’s criterion can be written as

    $$ \varepsilon_{\rm eq} \left( {n_{x} ,n_{y} } \right) = \frac{{\sigma_{a} }}{E}\left( {1 + \nu } \right)\sqrt {n_{x}^{2} + n_{y}^{2} - \left( {n_{x}^{2} + n_{y}^{2} } \right)^{2} } \left\{ {1 + k\sigma_{a} \frac{{\hbox{max} \left\{ {0,\left[ {\left( {1 + \alpha_{x} } \right)n_{x}^{2} + \left( {1 + \alpha_{y} } \right)n_{y}^{2} } \right]} \right\}}}{{S_{y} }}} \right\} $$
    (32)
  6. (6)

    Finally, calculate the critical plane orientation by finding the maximum value of the equivalent parameter \( \sigma_{\rm eq} \,(n_{x} ,\,n_{y} ) \) or ε eq (n x , n y ) which is a two-variable function. The analytical solution of the critical plane orientation is then obtained by solving the following equation system:

    $$ \left\{ {\begin{array}{*{20}l} {\frac{{\partial \sigma_{\rm eq} }}{{\partial n_{x} }} = 0} \hfill \\ {\frac{{\partial \sigma_{\rm eq} }}{{\partial n_{y} }} = 0} \hfill \\ {\left( {\frac{{\partial^{2} \sigma_{\rm eq} }}{{\partial n_{x} \partial n_{y} }}} \right)^{2} - \frac{{\partial^{2} \sigma_{\rm eq} }}{{\partial n_{x}^{2} }} \cdot \frac{{\partial^{2} \sigma_{\rm eq} }}{{\partial n_{y}^{2} }} < 0} \hfill \\ {\frac{{\partial^{2} \sigma_{\rm eq} }}{{\partial n_{x}^{2} }} < 0} \hfill \\ \end{array} } \right.\,{\text{or}}\,\left\{ {\begin{array}{*{20}l} {\frac{{\partial \varepsilon_{\rm eq} }}{{\partial n_{x} }} = 0} \hfill \\ {\frac{{\partial \varepsilon_{\rm eq} }}{{\partial n_{y} }} = 0} \hfill \\ {\left( {\frac{{\partial^{2} \varepsilon_{\rm eq} }}{{\partial n_{x} \partial n_{y} }}} \right)^{2} - \frac{{\partial^{2} \varepsilon_{\rm eq} }}{{\partial n_{x}^{2} }} \cdot \frac{{\partial^{2} \varepsilon_{\rm eq} }}{{\partial n_{y}^{2} }} < 0} \hfill \\ {\frac{{\partial^{2} \varepsilon_{\rm eq} }}{{\partial n_{x}^{2} }} < 0} \hfill \\ \end{array} } \right. $$
    (33)

Due to symmetry, only \( n_{x} ,\;n_{y} ,\;n_{z} \ge 0 \) are considered. Also, \( \alpha_{x} \) and \( \alpha_{y} \) are taken to be larger than −1 for the convenience of derivation. The analytical solution of the critical plane orientation, which is represented by the critical angles \( \varphi_{x} \) and \( \varphi_{y} \), is summarized in Table 1. Note that \( \varphi_{z} \) is also presented for convenience.

In the table, the auxiliary functions C M i ) for the modified Matake’s criterion and C F i ) for the modified Fatemi–Socie’s criterion are defined as

$$ C_{\rm M} \left( {\alpha_{i} } \right) = \sqrt {\frac{{1 + \sqrt {1 - \frac{1}{{a^{2} (1 + \alpha_{i} )^{2} + 1}}} }}{2}} $$
(34)
$$ C_{\rm F} (\alpha_{i} ) = \sqrt {\frac{{3 - \frac{{2S_{y} }}{{k\sigma_{a} \left( {1 + \alpha_{i} } \right)}} + \sqrt {\left( {1 + \frac{{2S_{y} }}{{k\sigma_{a} \left( {1 + \alpha_{i} } \right)}}} \right)^{2} + 8} }}{8}} $$
(35)

where the subscript i = x, y represent the x and y directions, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, BM., Tran, VX., Taheri, S. et al. An analytical study on cracking directions and damage in thermal fatigue crazing subjected to variable amplitude loadings. J Mater Sci 49, 5546–5563 (2014). https://doi.org/10.1007/s10853-014-8249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8249-5

Keywords

Navigation