Skip to main content

Experimental and numerical investigations on crack initiation and crack growth under constant and variable amplitude loadings in the VHCF regime

  • Chapter
  • First Online:
Fatigue of Materials at Very High Numbers of Loading Cycles

Abstract

For a fatigue strength assessment of safety-relevant components subjected to a very high number of cycles, it has to be considered that the fatigue limit is decreased and the crack initiation site is changed. Because the investigations in this field are mainly limited to constant amplitude loadings without mean stresses, within this research project experimental, numerical and analytical investigations are focused on the influences of variable amplitude loadings on the crack initiation site, the crack growth and the lifetime for a high-strength steel. Therefore, experiments with different repeated two-step loadings as well as standardized load-time-histories have been performed, which have different amounts of small amplitudes beneath the experimentally determined fatigue strength of the investigated material. In addition to the experimental results, complex elastic-plastic finite element simulations have been performed in order to investigate the influence of the mean stresses on the crack closure behaviour. Moreover, the experimental results are used to evaluate different analytical approaches for calculating fatigue lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] C. Bathias: ‘There is no infinite fatigue life in metallic materials’, Fatigue Fract. Eng. M., 1999, 7, 559–565.

    Article  CAS  Google Scholar 

  • [2] S. Nishijima and K. Kanazawa: ‘Stepwise S-N curve and fish-eye failure in gigacycle fatigue’, Fatigue Fract. Eng. M., 1999, 7, 601–607.

    Google Scholar 

  • [3] K. Shiozawa, M. Murai, Y. Shimatani and T. Yoshimoto: ‘Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime’, Int. J. Fatigue, 2010, 3, 541–550.

    Article  CAS  Google Scholar 

  • [4] Y. Murakami, T. Nomoto and T. Ueda: ‘On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1’, Fatigue Fract. Eng. M., 2000, 11, 893–902.

    Google Scholar 

  • [5] T. Sakai, Y. Sato and N. Oguma: ‘Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue’, Fatigue. Fract. Eng. M., 2002, 8-9, 765–773.

    Google Scholar 

  • [6] H. Mughrabi: ‘Fatigue, an everlasting materials problem - still en vogue’, Proc. Eng., 2010, 1, 3–26.

    Article  CAS  Google Scholar 

  • [7] E. Bayraktar, I. M. Garcias and C. Bathias: ‘Failure mechanisms of automotive metallic alloys in very high cycle fatigue range’, Int. J. Fatigue, 2006, 11, 1590–1602.

    Article  CAS  Google Scholar 

  • [8] T. Sakai, M. Takeda and N. Oguma: ‘Effect of strength level on fatigue property of several structural steels in ultra-wide life region’, 8th Int. Fatigue Congress, Stockholm, Sweden, 3-7 June, 2002.

    Google Scholar 

  • [9] B. Pyttel, D. Schwerdt and C. Berger: ‘Very high cycle fatigue – Is there a fatigue limit?’, Int. J. Fatigue, 2011, 1, 49–58.

    Article  CAS  Google Scholar 

  • [10] Y. Murakami: ‘Metal fatigue - Effects of small defects and nonmetallic inclusions’, 2002, Amsterdam, Elsevier.

    Chapter  Google Scholar 

  • [11] K. Tanaka and Y. Akiniwa: ‘Fatigue crack propagation behaviour derived from S-N data in very high cycle regime’, Fatigue Fract. Eng. M., 2002, 8-9, 775–784.

    Google Scholar 

  • [12] S. Fujita and Y. Murakami: ‘A new nonmetallic inclusion rating method by positive use of hydrogen embrittlement phenomenon’, Metall. Mater. Trans. A, 2013, 1, 303–322.

    Article  Google Scholar 

  • [13] Y. Murakami, J. Nagata and H. Matsunaga: ‘Factors affecting ultralong life fatigue and design method for components’, 9th Intern. Fatigue Congress, Atlanta, Georgia, USA. 14-19 May, 2006.

    Google Scholar 

  • [14] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: ‘Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime’, Int. J. Fatigue, 2006, 11, 1521–1532.

    Article  CAS  Google Scholar 

  • [15] T. Sakai, Y. Sato, Y. Nagano, M. Takeda and N. Oguma: ‘Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading’, Int. J. Fatigue, 2006, 11, 1547–1554.

    Article  CAS  Google Scholar 

  • [16] T. Ogawa, S. Stanzl-Tschegg and B. M. Schönbauer: ‘A fracture mechanics approach to interior fatigue crack growth in the very high cycle regime’, Eng. Fract. Mech., 2014, 241–254.

    Article  Google Scholar 

  • [17] S. Issler, M. Bacher-Höchst and W. Haydn: ‘Fatigue design for components under variable amplitude loading in the very high cycle fatigue area’, 2nd Int. Conf. on ‘Material and Component Performance under Variable Amplitude Loading’, Berlin, Germany, 2009.

    Google Scholar 

  • [18] L. Lu and K. Shiozawa: ‘Effect of two-step load variation on giga-cycle fatigue and internal crack growth behaviour of high carbon-chromium bearing steel’, 3th Int. Conference of Very High Cycle Fatigue, Kusatsu, Japan, 16-19 September, 2004.

    Google Scholar 

  • [19] H. Mayer, W. Haydn, R. Schuller, S. Issler and M. Bacher-Höchst: ‘Very high cycle fatigue properties of bainitic high carbon–chromium steel under variable amplitude conditions’, Int. J. Fatigue, 2009, 8-9, 1300–1308.

    Google Scholar 

  • [20] H. Mayer, S. Stojanovic, C. Ede and B. Zettl: ‘Beitrag niedriger Lastamplituden zur Ermüdungsschädigung von 0,15 %C Stahl’, Materialwiss. Werkst., 2007, 8, 581–590.

    Article  CAS  Google Scholar 

  • [21] M. Meischel, S. Stanzl-Tschegg, A. Arcari, N. Iyyer, N. Apetre and N. Phan: ‘Constant and variable-amplitude loading of aluminum alloy 7075 in the VHCF regime’, Proc. Eng., 2015, 501–508.

    Google Scholar 

  • [22] T. Müller and M. Sander: ‘On the use of ultrasonic fatigue testing technique-variable amplitude loadings and crack growth monitoring’, Ultrasonics, 2013, 8, 1417–1424.

    Article  Google Scholar 

  • [23] M. Sander, T. Müller and J. Lebahn: ‘Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime’, Int. J. Fatigue, 2014, 10–20.

    Article  CAS  Google Scholar 

  • [24] M. Sander, T. Müller and C. Stäcker: ‘Very high cycle fatigue behavior under constant and variable amplitude loading’, Proc. Struct. Integ., 2016, 34–41.

    Article  Google Scholar 

  • [25] Deutsche Edelstahlwerke: ‘Werkstoffdatenblatt - 34CrNiMo6’; available at https://www.dewstahl.com/fileadmin/files/dewstahl.com/documents/Publikationen/Werkstoffdatenblaetter/Baustahl/1.6582_de.pdf (accessed 8 February 2017).

  • [26] T. Müller: ‘Einfluss variabler Amplitudenbelastungen auf die Rissinitiierung und das Risswachstum im Bereich sehr hoher Lastwechselzahlen’, PhD thesis, University of Rostock, Rostock, 2016.

    Google Scholar 

  • [27] M. Luke, I. Varfolomeev, K. Lütkepohl and A. Esderts: ‘Fracture mechanics assessment of crack propagation in railway axle steels under fully reversed variable amplitude loading’, In: C. M. Sosino (eds.): ‘Proceedings / Second International Conference on Material and Component Performance under Variable Amplitude Loading’, 2009, DVM, Berlin, 259–268.

    Google Scholar 

  • [28] W. J. Dixon and A. M. Mood: ‘A method for obtaining and analyzing sensitivity data’, J. Am Stat Assoc., 1948, 241, 109.

    Article  Google Scholar 

  • [29] M. Hück: ‘Ein verbessertes Verfahren für die Auswertung von Treppenstufenversuchen’, Materialwiss. Werkst., 1983, 12, 406–417.

    Article  Google Scholar 

  • [30] Forschungskuratorium Maschinenbau: ‘Analytical Strength Assessment of components, FKM Guideline’, VDMA-Verlag, Frankfurt, 2013.

    Google Scholar 

  • [31] T. Beck, S. Kovacs and L. Singheiser: ‘Influence of high mean stresses on lifetime and damage of the martensitic steel X10CrNiMoV12-2-2 in the VHCF-regime’, 13th Int. Conference on Fracture, Beijing, China. 16-21 June, 2013.

    Google Scholar 

  • [32] T. Müller and M. Sander: ‘Investigation of variable amplitude loading and stress ratio in the very high cycle fatigue regime using micro-notched specimens’, Proc. Eng., 2015, 322–329.

    Article  Google Scholar 

  • [33] T. Müller and M. Sander: ‘Experimental and analytical study of the effect of variable amplitude loadings in VHCF regime’, CD-ROM Proc. 13th International Conference on Fracture, Beijing, China, 2013.

    Google Scholar 

  • [34] Nano Structuring Center, University of Kaiserslautern, 2016.

    Google Scholar 

  • [35] S. Kovacs, T. Beck and L. Singheiser: ‘Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime’, Int. J. Fatigue, 2013, 90–99.

    Article  CAS  Google Scholar 

  • [36] H. Mayer, R. Schuller, U. Karr, M. Fitzka, D. Irrasch, M. Hahn and M. Bacher-Höchst: ‘Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading’, Int. J. Fatigue, 2016.

    Google Scholar 

  • [37] Y.-D. Li, L.-L. Zhang, Y.-H. Fei, X.-Y. Liu and M.-X. Li: ‘On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime’, Int. J. Fatigue, 2016, 402–410.

    Article  Google Scholar 

  • [38] T. Müller and M. Sander: ‘Experimental investigations and damage calculations of a load time history in the very high cycle fatigue’, AMR, 2014, 446–451.

    Google Scholar 

  • [39] J. Lemaitre and J.-L. Chaboche: ‘Mechanics of solid materials’, 1990, Cambridge, Cambridge University Press.

    Google Scholar 

  • [40] C. Benz: ‘Bewertung negativer Lastanteile bei der Ermüdungsrissausbreitung’. PhD thesis. University of Rostock, Rostock, Germany, 2015.

    Google Scholar 

  • [41] I. S. Putra and J. Schijve: ‘Crack opening stress measurements of surface cracks in 7075-T6 aluminum alloy plate specimen through electron fractography’, Fatigue Fract. Eng. M., 1992, 4, 323–338.

    Article  CAS  Google Scholar 

  • [42] V. McDonald: ‘Growth of surface cracks under cyclic loading’. Master thesis. Mississippi State University, Department of Mechanical Engineering, 2000.

    Google Scholar 

  • [43] K. Solanki, S. R. Daniewicz and J. C. Newman Jr.: ‘Finite element analysis of plasticity-induced fatigue crack closure’, Eng. Fract. Mech., 2004, 2, 149–171.

    Google Scholar 

  • [44] J. C. Newman: ‘A crack opening stress equation for fatigue crack growth’, Int. J. Fracture, 1984, 4, R131-R135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Sander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sander, M., Stäcker, C., Müller, T. (2018). Experimental and numerical investigations on crack initiation and crack growth under constant and variable amplitude loadings in the VHCF regime. In: Christ, HJ. (eds) Fatigue of Materials at Very High Numbers of Loading Cycles. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-24531-3_13

Download citation

Publish with us

Policies and ethics