Skip to main content
Log in

Hierarchical pseudo-cubic hematite nanoparticle as formaldehyde sensor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To develop a low cost and scalable gas, sensor for the detection of toxic and flammable gases with fast response and high sensitivity is extremely important for monitoring environmental pollution. This work reports a facile method for preparing pseudo-cubic hierarchical α-Fe2O3 nanostructured materials as well as their implementation in gas sensor application. The α-Fe2O3 is developed using Fe(NO3)3 and ethylene glycol followed by a facile and one-step solvo-thermal reaction without subsequent heat treatment. The pseudo-cubic nanostructures were having an average edge length of 5–10 nm. The solvent played the role of ligand and synergistically affected olation and oxolation process along with dehydration to form final product. The sensor performance of α-Fe2O3 in the detection of toxic and flammable gases such as formaldehyde (HCHO), ethanol (C2H5OH), and carbon monoxide (CO) was evaluated. As-synthesized nanostructured hematite showed better sensing performance towards formaldehyde. The fabricated gas sensor showed temperature sensitivity sensing performance for the same gas. In addition, ethanol, formaldehyde vapours, and carbon monoxide gas-sensing properties were tested and the sensing performance of the synthesized material was found to be in the order of HCHO > C2H5OH > CO. This sensing performance is attributed to the large specific surface area of the pseudo-cubic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang L, Hu J, Song P, Qin H, Liu X, Jiang M (2005) Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-materials. Phys B 370:259–263

    Article  Google Scholar 

  2. Achmann S, Hammerle M, Moos R (2008) Amperometric enzyme-based gas sensor for formaldehyde: impact of possible interferences. Sensors 8:1351–1365

    Article  Google Scholar 

  3. Golden R (2011) Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. Crit Rev Toxicol 41:672–721

    Article  Google Scholar 

  4. Xue X, Nie Y, He B, Xing L, Zhang Y, Wang ZL (2013) Surface free-carrier screening effect on the output of a ZnO nanowire nano generator and its potential as a self-powered active gas sensor. Nanotechnology 24:225501–225506

    Article  Google Scholar 

  5. Comini E, Faglia G, Ferroni M, Sberveglieri G (2007) Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation. Appl Phys A 88:45–48

    Article  Google Scholar 

  6. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Microwave assisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensing and degradation. J Mater Sci 24:2082–2090

    Google Scholar 

  7. Jiang LY, Wu XL, Guo Y, Wan LJ (2009) SnO2-Based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113:14213–14219

    Article  Google Scholar 

  8. Radecka M, Jasiski M, Kafel JK, Rekas M, Yso B, Czapla A, Lubecka M, Sokoowski M, Zakrzewska K, Heel A, Graule TJ (2010) TiO2-based nano powders for gas sensor. Ceram Mater 62:545–549

    Google Scholar 

  9. Wang CX, Yin L, Zhang L, Qi Y, Lun N, Liu N (2010) Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26:12841–12848

    Article  Google Scholar 

  10. Yang Y, Ma H, Zhuang J, Wang X (2011) Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg Chem 50:10143–10151

    Article  Google Scholar 

  11. Wu XL, Guo Y, Wan LJ, Hu CW (2008) α-Fe2O3 nanostructures: inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage. J Phys Chem C 112:16824–16829

    Article  Google Scholar 

  12. Sun B, Horvat J, Kim HS, Kim WS, Ahn J, Wang G (2010) Synthesis of mesoporous γ-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761

    Article  Google Scholar 

  13. Liu X, Zhang J, Guo X, Wu S, Wang S (2010) Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21:095501

    Article  Google Scholar 

  14. Mao D, Yao J, Lai X, Yang M, Du J, Wang D (2011) Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 7:578–582

    Article  Google Scholar 

  15. Chen YJ, Zhu CL, Wang LJ, Gao P, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods. Nanotechnology 20:045502

    Article  Google Scholar 

  16. Neri G, Bonavita A, Rizzo G, Galvagno S, Donato N, Caputi LS (2004) A study of water influence on CO response on gold-doped iron oxide sensors. Sens Actuators B 101:90–96

    Article  Google Scholar 

  17. He F, Han J, Zheng Y, Yu H, Wang Y (1994) Structural formula and gas-sensitive properties of α-Fe2O3(SO4 ). J Appl Phys 33:2626

    Article  Google Scholar 

  18. Zhang F, Yang H, Xie X, Li L, Zhang L, Yu J, Zhao H, Liu B (2009) Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens Actuators B 141:381–389

    Article  Google Scholar 

  19. Ma J, Teo J, Mei L (2012) Porous plate like hematite mesocrystals: synthesis, catalytic and gas-sensing applications. J Mater Chem 22:11694–11700

    Article  Google Scholar 

  20. Wu Z, Yu K, Zhang S, Xie Y (2008) Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C 112:11307–11313

    Article  Google Scholar 

  21. Li S, Qin G, Meng X, Ren Y, Zuo L (2013) Chemical synthesis of faceted α-Fe2O3 single-crystalline nanoparticles and their photocatalytic activity. J Mater Sci 48:5744–5749. doi:10.1007/s10853-013-7366-x

    Article  Google Scholar 

  22. Almeida TP, Fay MW, Zhu Y, Brown PD (2012) Prospects for the incorporation of cobalt into α-Fe2O3 nanorods during hydrothermal synthesis. J Mater Sci 47:5546–5560. doi:10.1007/s10853-012-6448-5

    Article  Google Scholar 

  23. Wheeler DA, Wang GA, Ling Y, Li Y, Zhang JZ (2012) Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photo electrochemical properties. Energy Environ Sci 5:6682–6700

    Article  Google Scholar 

  24. Zhu W, Cui X, Zhang XL, Huang JQ, Piao X, Zhang Q (2013) Hydrothermal evolution, optical and electrochemical properties of hierarchical porous hematite nanoarchitectures. Nanoscale Res Lett 8(1):2

    Article  Google Scholar 

  25. Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N, Wang D (2010) Template-free hydrothermal synthesis of hallow hematite microspheres. J Mater Sci 45:5685–5691. doi:10.1007/s10853-010-4634-x

    Article  Google Scholar 

  26. Zhu W, Cui X, Wang L, Liu T, Zhang Q (2011) Monodisperse porous pod-like hematite: hydrothermal formation, optical absorbance, and magnetic properties. Mater Lett 65:1003–1006

    Article  Google Scholar 

  27. Gao G, Zhang Q, Wang K, Song H, Qiu P, Cu D (2013) Axial compressive α-Fe2O3 microdisks prepared from CSS template for potential anode materials of lithium ion batteries. Nano Energy 2:1010–1018

    Article  Google Scholar 

  28. Tao Y, Gao Q, Di J, Wu X (2013) Gas sensors based on α-Fe2O3 nanorods, nanotubes and nanocubes. J Nanosci Nanotechnol 13:5654–5660

    Article  Google Scholar 

  29. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  Google Scholar 

  30. Al-Kadya AS, Gabera M, Husseinb MM, Ebeid EZM (2011) Structural and fluorescence quenching characterization of hematite nanoparticles. Spec Chim Acta A 83:398–405

    Article  Google Scholar 

  31. Jia Y, Luo T, Yu X-Y, Sun B, Liu J-H, Huang X-J (2013) Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards. RSC Adv. 3:15805–15811

    Article  Google Scholar 

  32. Bersani D, Lottici PP, Montenero (1999) A micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360

    Article  Google Scholar 

  33. Fang XL, Chen C, Jin MS, Kuang Q, Xie ZX, Xie SY, Huang RB (2009) Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. J Mater Chem 19:6154–6160

    Article  Google Scholar 

  34. Wu CZ, Yin P, Zhu X, Yang CO, Xie Y (2006) Synthesis of hematite (γ-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery and gas sensors. J Phys Chem B 110:17806–17812

    Article  Google Scholar 

  35. Zhong JU, Cao C, Liu Y, Li Y, Khan WS (2008) Hollow core–shell γ-Fe2O3 microspheres with excellent lithium-storage and gas-sensing properties. Chem Commun 46:3869–3871

    Article  Google Scholar 

  36. Fei X, Sao ZZ, Chen X (2013) Hematite nanostructures synthesized by a silk fibroin-assisted hydrothermal method. J Mater Chem B 1:213–220

    Article  Google Scholar 

  37. Carraro G, Barreca D, Comini E, Gasparotto A, Maccato C, Sadad C, Sberveglieri G (2012) Controlled synthesis and properties of β-Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. Cryst Eng Comm 14:6469–6476

    Article  Google Scholar 

  38. Fujii T, de Groot FMF, Sawatzky GA (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:4

    Article  Google Scholar 

  39. Ferretto L, Glisenti A (2002) Study of the surface acidity of an hematite powder. J Mol Cat A 187:119–128

    Article  Google Scholar 

  40. Jin W, Dong B, Chen W, Zhao C, Mai L, Dai Y (2010) Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes. Sens Actuators B 145:211–215

    Article  Google Scholar 

  41. Gou X, Wang G, Kong X, Wexler DJ, Horvat JY, Park J (2008) Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem Eur J 14:5996–6002

    Article  Google Scholar 

  42. Gou X, Wang G, Park J, Liu H, Yang J (2008) Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19:125606–125612

    Article  Google Scholar 

  43. Guimarães CS, Varandas LS, Arbilla G (2010) Formaldehyde and acetaldehyde concentrations in the idle and taxiway areas of an urban airport. J Braz Chem Soc 21:481–488

    Article  Google Scholar 

  44. Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9:9903–9924

    Article  Google Scholar 

  45. Singh VN, Mehta BR, Joshi RK, Kruis FE (2007) Size-dependent gas sensing properties of indium oxide nanoparticle layers. J Nanosci Nanotechnol 7:1930–1934

    Article  Google Scholar 

  46. Singh VN, Partheepan G (2013) Linear sensing response to ethanol by indium oxide nanoparticle layers. J Nanosci 540741:4

    Google Scholar 

  47. Sun P, Zhu Z, Zhao P, Liang X, Sun Y, Liu F, Lu G (2012) Gas sensing with hollow α-Fe2O3 urchin-like spheres prepared via template-free hydrothermal synthesis. Cryst Eng Comm 14:8335–8337

    Article  Google Scholar 

  48. Chi X, Liu C, Liu L, Li S, Li H, Zhang X, Bo X, Shana H (2014) Enhanced formaldehyde-sensing properties of mixed Fe2O3–In2O3 nanotubes. Mater Sci Semicond Process 18:160–164

    Article  Google Scholar 

  49. Huang L, Fan H (2012) Room temperature solid-state synthesis of ZnO/α-Fe2O3 hierarchical nano structures and their enhanced properties. Sens Actuators B 172:1257–1263

    Article  Google Scholar 

Download references

Acknowledgements

The Authors are very much thankful to Prof. B. K. Mishra Director, CSIR-IMMT, Bhubaneswar and Dr I. N. Bhattacharya, HOD (Hydro and Electrometallurgy Department, CSIR-IMMT). DST INSPIRE Division, India is highly acknowledged by Rasmita Barik. The authors are also very grateful to Dr M. K. Ghosh, principal scientist, CSIR-IMMT and Mr Pradeep Ch. Rout, CSIR-SRF for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasmita Barik or Mamata Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, R., Tripathy, S.K. & Mohapatra, M. Hierarchical pseudo-cubic hematite nanoparticle as formaldehyde sensor. J Mater Sci 49, 5345–5354 (2014). https://doi.org/10.1007/s10853-014-8237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8237-9

Keywords

Navigation