Skip to main content
Log in

Template-free hydrothermal synthesis of hollow hematite microspheres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow hematite (α-Fe2O3) microspheres with an average diameter of 3-4 μm and a shell thickness of approximate 150 nm was synthesized by a simple hydrothermal route using FeCl3·6H2O solution and acetic acid without using any templates. The hollow microspheres were composed of α-Fe2O3 nanoparticles with the diameter range from 20 to 40 nm. The effects of reaction parameters such as reaction time, temperature, concentration of FeCl3·6H2O solution, and initial pH on the morphology of the final products were investigated. A possible formation mechanism of hollow α-Fe2O3 microspheres was also proposed, where the acetic acid played a role of etching in the formation of hollow structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lou XW, Archer LA, Yang ZC (2008) Adv Mater 20:3987

    Article  CAS  Google Scholar 

  2. Caruso F, Caruso RA, Möhwald H (1998) Science 282:1111

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Caruso F (2000) Chem Eur J 6:413

    Article  CAS  Google Scholar 

  4. Caruso F (2001) Adv Mater 13:11

    Article  CAS  Google Scholar 

  5. Schärtl W (2000) Adv Mater 12:1899

    Article  Google Scholar 

  6. Zhong Z, Yin Y, Gates B, Yia Y (2000) Adv Mater 12:206

    Article  CAS  Google Scholar 

  7. Fowler CE, Khushalani D, Mann S (2001) J Mater Chem 11:1968

    Article  CAS  Google Scholar 

  8. Zhao WR, Chen HR, Li YS, Li L, Lang MD, Shi JL (2006) Adv Funct Mater 16:2243

    Article  Google Scholar 

  9. Bertling J, Blömer J, Kümmel R (2004) Chem Eng Technol 27:829

    Article  CAS  Google Scholar 

  10. Xiao LF, Zhao YQ, Yin J, Zhang LZ (2009) Chem Eur J 15:9442

    Article  CAS  Google Scholar 

  11. Du N, Zhang H, Chen J, Sun J, Chen B, Yang D (2008) J Phys Chem B 112:14836

    Article  CAS  PubMed  Google Scholar 

  12. Liu GX, Hong GY (2005) J Solid State Chem 178:1647

    Article  CAS  ADS  Google Scholar 

  13. Caruso RA, Susha A, Caruso F (2001) Chem Mater 13:400

    Article  CAS  Google Scholar 

  14. Shen W, Zhu Y, Dong X, Gu J, Shi J (2005) Chem Lett 34:840

    Article  CAS  Google Scholar 

  15. Wu ZC, Zhang M, Yu K, Zhang SD, Xie Y (2008) Chem Eur J 14:5346

    Article  CAS  Google Scholar 

  16. Chen XY, Zhang ZJ, Li XX, Shi CW (2006) Chem Phys Lett 422:294

    Article  CAS  ADS  Google Scholar 

  17. Chen T, Colver PJ, Bon SAF (2007) Adv Mater 19:2286

    Article  CAS  Google Scholar 

  18. Zimmermann C, Feldmann C, Wanner M, Gerthsen D (2007) Small 3:1347

    Article  CAS  PubMed  Google Scholar 

  19. Zhang DB, Qi LM, Ma JM, Cheng HM (2002) Adv Mater 14:1499

    Article  CAS  Google Scholar 

  20. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, uses. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  21. Willard MA, Kuriharal LK, Carpenter EE, Calvin S, Harris VG (2004) Int Mater Rev 49:125

    Article  CAS  Google Scholar 

  22. Huo L, Li W, Lu L, Cui H, Xi S, Wang J, Zhao B, Shen Y, Lu Z (2000) Chem Mater 12:790

    Article  CAS  Google Scholar 

  23. Dong WT, Zhu CS (2002) J Mater Chem 12:1676

    Article  CAS  Google Scholar 

  24. Kodama RH, Makholoufand SA, Berkowitz AE (1997) Phys Rev Lett 79:1393

    Article  CAS  ADS  Google Scholar 

  25. Wu ZC, Yu K, Zhang SD, Xie Y (2008) J Phys Chem C 112:11307

    Article  CAS  Google Scholar 

  26. Lian SY, Wang EB, Gao L, Wu D, Song YL, Xu L (2006) Mater Res Bull 41:1192

    Article  CAS  Google Scholar 

  27. Li L, Chu Y, Liu Y, Dong L (2007) J Phys Chem C 111:2123

    Article  CAS  Google Scholar 

  28. Cao SW, Zhu YJ (2008) J Phys Chem C 112:6253

    Article  CAS  Google Scholar 

  29. Cao SW, Zhu YJ (2008) J Phys Chem C 112:12149

    Article  CAS  Google Scholar 

  30. Zhang YP, Chu Y, Dong LH (2007) Nanotechnology 18:435608

    Article  ADS  Google Scholar 

  31. Jagadeesan D, Mansoori U, Mandal P, Sundaresan A, Eswaramoorthy M (2008) Angew Chem Int Ed 47:7685

    Article  CAS  Google Scholar 

  32. Dong Q, Wang D, Yao JX, Kumada N, Kinomura N, Takei T, Yonesaki Y, Cai Q (2009) J Ceram Soc Jpn 117:245

    Article  CAS  Google Scholar 

  33. Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N (2009) J Ceram Soc Jpn 117:881

    Article  CAS  Google Scholar 

  34. Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N (2010) J Ceram Soc Jpn 118:222

    Article  Google Scholar 

  35. Lee JH (2009) Sens Actuators B 140:319

    Article  ADS  Google Scholar 

  36. An K, Hyeon T (2009) Nano Today 4:359

    Article  Google Scholar 

  37. Kuo TJ, Kuo CL, Kuo CH, Huang MH (2009) J Phys Chem C 113:3625

    Article  CAS  Google Scholar 

  38. An K, Kwon SG, Park M, Na HB, Baik SI, Yu JH et al (2008) Nano Lett 8:4252

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Chavez KL, Hess DW (2001) J Electrochem Soc 148:640

    Article  Google Scholar 

  40. Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C, Kalt H (2008) ACS Nano 2:1661

    Article  CAS  PubMed  Google Scholar 

  41. Kuo CH, Huang MH (2008) J Am Chem Soc 130:12815

    Article  CAS  PubMed  Google Scholar 

  42. Jing ZH, Wu SH, Zhang SM, Huang WP (2004) Mater Res Bull 39:2057

    Article  CAS  Google Scholar 

  43. Pei ZF, Ponec V (1996) Appl Surf Sci 103:171

    Article  CAS  ADS  Google Scholar 

  44. Kim JK, Oh HS, Jo CW, Suh YJ, Jang HD, Koo KK (2009) Chem Eng Res Des. doi:10.1016/j.cherd.2009.08.011

  45. Zając EK, Marek KG, Datka (2006) J Microporous Mesoporous Mater 96:216

    Article  Google Scholar 

  46. Hong RY, Fu HP, Di GQ, Zheng Y, Wei DG (2008) Mater Chem Phys 108:132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Kumada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Q., Kumada, N., Yonesaki, Y. et al. Template-free hydrothermal synthesis of hollow hematite microspheres. J Mater Sci 45, 5685–5691 (2010). https://doi.org/10.1007/s10853-010-4634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4634-x

Keywords

Navigation