Skip to main content
Log in

Efficient stabilization of Cu+ ions in phosphate glasses via reduction of Cu2+ by Sn2+ during ambient atmosphere melting

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glasses containing substantial amounts of well-dispersed luminescent Cu+ ions are attractive materials for applications in solid-state lighting, photonic waveguides, and solar cells. Thus far, coming across a simple yet effective method for the preparation of such has remained elusive given the instability of Cu+ relative to Cu2+, especially for syntheses carried out under the oxidizing air atmosphere. In this work, high concentrations of monovalent copper ions are shown to be successfully incorporated in a high-solubility phosphate glass matrix by a simple melt-quench method. The traditional Cu2+ spectrophotometric analysis commonly utilized for liquid solutions is proposed herein for the solid-state material to estimate the reduction efficiency of Cu2+ during the material preparation process. Reproducibly, the use of relatively large quantities of copper(II) oxide with equal amounts of reducing agent tin(II) oxide (up to 20 mol%), together with the use of sucrose to assist as antioxidant during melting in air atmosphere, yields high-reduction efficiencies estimated at 98 %. Along with the optical absorption analysis, photoluminescence spectroscopy is employed in evaluating the emission properties of the glasses in connection to the Cu+ ions. Further, solid-state 31P nuclear magnetic resonance spectroscopy reveals the structural features of the glasses that support the remarkable stabilization of the Cu+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simo A, Polte J, Pfänder N, Vainio U, Emmerling F, Rademann K (2012) Formation mechanism of silver nanoparticles stabilized in glassy matrices. J Am Chem Soc 134:18824–18833

    Article  Google Scholar 

  2. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A, Girard S, Bouazaoui M (2012) Sol–gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt Express 20:29751–29760

    Article  Google Scholar 

  3. Kuznetsov AS, Tikhomirov VK, Shestakov MV, Moshchalkov VV (2013) Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale 5:10065–10075

    Article  Google Scholar 

  4. Debnath R, Das SK (1989) Site-dependent luminescence of Cu+ ions in silica glass. Chem Phys Lett 155:52–58

    Article  Google Scholar 

  5. Boutinaud P, Parent C, Le Flem G, Pedrini C, Moine B (1992) Spectroscopic investigation of the copper(I)-rich phosphate CuZr2(PO4)3. J Phys Condens Matter 4:3031–3042

    Article  Google Scholar 

  6. Parent C, Boutinaud P, Le Flem G, Moine B, Pedrini C, Garcia D, Faucher M (1994) Monovalent copper-activated oxygenated insulators. Opt Mater 4:107–113

    Article  Google Scholar 

  7. Fujimoto Y, Nakatsuka M (1997) Spectroscopic properties and quantum yield of Cu-doped SiO2 glass. J Lumin 75:213–219

    Article  Google Scholar 

  8. Ti Y, Qiu F, Cao Y, Jia L, Qin W, Zheng J, Farrell G (2008) Photoluminescence of copper ion exchange BK7 glass planar waveguides. J Mater Sci 43:7073–7078. doi:10.1007/s10853-008-3057-4

    Article  Google Scholar 

  9. Gómez S, Urra I, Valiente R, Rodríguez F (2011) Spectroscopic study of Cu2+/Cu+ doubly and highly transmitting glasses for solar spectral transformation. Sol Energy Mater Sol Cells 95:2018–2022

    Article  Google Scholar 

  10. Yasumori A, Tada F, Yanagida S, Kishi T (2012) Yellow photoluminescence properties of copper ion doped phase–separated glasses in alkali borosilicate system. J Electrochem Soc 159:J143–J147

    Article  Google Scholar 

  11. Stepanov B, Ren J, Wagner T, Lorincik J, Frumar M, Churbanov M, Chigirinsky Y (2011) Solid state field-assisted diffusion of copper in multi-component tellurite glass. J Am Ceram Soc 94:1986–1988

    Article  Google Scholar 

  12. Zhang Q, Chen G, Dong G, Zhang G, Liu X, Qiu J, Zhou Q, Chen Q, Chen D (2009) The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere. Chem Phys Lett 482:228–233

    Article  Google Scholar 

  13. Liu H, Gan F (1986) Luminescence of Cu+ ions in phosphate glass. J Non-Cryst Solids 80:447–454

    Article  Google Scholar 

  14. Boutinaud P, Duloisy E, Pedrini C, Moine B, Parent C, Le Flem G (1991) Fluorescence properties of Cu+ ion in phosphate glasses of the BaLiPO4–P2O5 system. J Solid State Chem 94:236–243

    Article  Google Scholar 

  15. Murata T, Morinaga K (2000) Effect of antimony on the deposition and dispersion of metallic copper nanoparticles in phosphate glasses for optical nonlinear materials. Proc SPIE 4102:316–323

    Article  Google Scholar 

  16. Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima AJ, Tokisaki T, Nakamura A (1994) Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J Opt Soc Am B 11:1236–1243

    Article  Google Scholar 

  17. Jiménez JA, Hockenbury JB (2013) Spectroscopic properties of CuO, SnO and Dy2O3 co-doped phosphate glass: from luminescent material to plasmonic nanocomposite. J Mater Sci 48:6921–6928. doi:10.1007/s10853-013-7497-0

    Article  Google Scholar 

  18. Shyu JJ, Chiang CC (2011) Photoluminescence properties of Er3+-doped and Er3+/Yb3+ codoped SnO–P2O5 glasses. J Am Ceram Soc 94:2099–2103. doi:10.1111/j.1551-2916.2011.04489.x

    Article  Google Scholar 

  19. Jiménez JA (2014) Optical properties of Cu nanocomposite glass obtained via CuO and SnO co-doping. Appl Phys A Mater Sci Process 114:1369–1376. doi:10.1007/s00339-013-7992-9

  20. García MA, Borsella E, Paje SE, Llopis J, Villegas MA, Polloni R (2001) Luminescence time decay from Cu+ ions in sol–gel silica coatings. J Lumin 93:253–259

    Article  Google Scholar 

  21. Borsella E, Dal Vecchio A, García MA, Sada C, Gonella F, Polloni R, Quaranta A, van Wilderen LJGW (2002) Copper doping of silicate glasses by the ion-exchange technique: a photoluminescence spectroscopy study. J Appl Phys 91:90–98

    Article  Google Scholar 

  22. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263–264:1–28

    Article  Google Scholar 

  23. Koudelka L, Rösslerová I, Holubová J, Mošner P, Montagne L, Revel B (2011) Structural study of PbO–MoO3–P2O5 glasses by Raman and NMR spectroscopy. J Non-Cryst Solids 357:2816–2821

    Article  Google Scholar 

  24. Valappil SP, Ready D, Abou Neel EA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith MA, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Chunqing Zhao, Manager of the Analytical Instrumentation Faculty in the Chemistry Department at UNF for the solid-state 31P NMR spectroscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J.A. Efficient stabilization of Cu+ ions in phosphate glasses via reduction of Cu2+ by Sn2+ during ambient atmosphere melting. J Mater Sci 49, 4387–4393 (2014). https://doi.org/10.1007/s10853-014-8138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8138-y

Keywords

Navigation