Skip to main content
Log in

Characterization of spray-coating methods for conjugated polymer blend thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We examine the characteristics and functionality of conjugated polymer thin films, based on blends of poly(9,9-dioctylfluorene-2,7-diyl-co-bis-N,NN′-(4-butylphenyl)-bis-N,N′-phenyl-1,4-phenylenediamine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT), using a spray-coating deposition technique suitable for large areas. The morphological properties of these blend films are studied in detail by atomic force microscopy (AFM) methods, showing that favourable results, in terms of layer deposition rate and uniformity, can be achieved using a 5:1 blend of o-dichlorobenzene and chlorobenzene as the solvent medium. A photoluminescence quenching efficiency of above 80 % is also observed in such blend films. As a feasibility study, prototypical photovoltaic devices exhibit open circuit voltages of up to 1.0 V under testing, and solar power conversion efficiencies in the 0.1–1 % order of magnitude; metrics which are comparable with those reported for spin-coated cells of the same active blend and device architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. These materials were characterized as follows: F8BT; Mn = 81 k, Mp = 174 k, polydispersity (PD) = 2.6, photoluminescence quantum yield (PLQY) = 82 %. PFB; Mn = 39 k, Mp = 162 k, PD = 4.5, PLQY = 27 %.

References

  1. Middleman S, Hochberg AK (1993) Process engineering analysis in semiconductor device fabrication. McGraw-Hill, New York

    Google Scholar 

  2. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices. Adv Mater 22:572–582

    Article  Google Scholar 

  3. Gelinck GH, Huitema HEA, van Veenendaal E et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106–110

    Article  Google Scholar 

  4. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  5. Bouclé J, Ravirajan P, Nelson J (2007) Hybrid polymer–metal oxide thin films for photovoltaic applications. J Mater Chem 17:3141–3153

    Article  Google Scholar 

  6. Thompson BC, Fréchet JMJ (2008) Organic photovoltaics: polymer-fullerene composite solar cells. Angew Chem Intl Ed 47:58–77

    Article  Google Scholar 

  7. Chen H-Y, Hou J, Zhang S et al (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    Article  Google Scholar 

  8. Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714

    Article  Google Scholar 

  9. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  Google Scholar 

  10. Susanna G, Salamandra L, Brown TM, Di Carlo A, Brunetti F, Reale A (2011) Airbrush spray-coating of polymer bulk-heterojunction solar cells. Sol Energy Mater Sol Cells 95:1775–1778

    Article  Google Scholar 

  11. Abdellah A, Fabel B, Lugli P, Scarpa G (2010) Spray deposition of organic semiconducting thin-films: towards the fabrication of arbitrary shaped organic electronic devices. Org Electron 11:1031–1038

    Article  Google Scholar 

  12. Girotto C, Rand BP, Genoe J, Heremans P (2009) Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol Energy Mater Sol Cells 93:454–458

    Article  Google Scholar 

  13. Hoth CN, Steim R, Schilinsky P, Choulis SA, Tedde SF, Hayden O, Brabec CJ (2009) Topographical and morphological aspects of spray coated organic photovoltaics. Org Electron 10:587–593

    Article  Google Scholar 

  14. McNeill CR, Greenham NC (2009) Conjugated-polymer blends for optoelectronics. Adv Mater 21:3840–3850

    Article  Google Scholar 

  15. Green R, Morfa A, Ferguson AJ, Kopidakis N, Rumbles G, Shaheen SE (2008) Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl Phys Lett 92:033301

    Article  Google Scholar 

  16. Shikler R, Friend RH (2007) Modeling the effect of the structure of polymer photocells on their absorption spectrum. J Appl Phys 102:013105

    Article  Google Scholar 

  17. Mueller R, Kleinebuddel P (2007) Comparison of a laboratory and a production coating spray gun with respect to scale-up. AAPS Pharm Sci Tech 8(1):E1–E11

    Article  Google Scholar 

  18. Kietzke T (2007) Recent advances in organic solar cells. Adv Optoelectron. Article ID 40285

  19. Hallam T, Lee M, Zhao N, Nandhakumar I, Kemerink M, Heeney M, McCulloch I, Sirringhaus H (2009) Local charge trapping in conjugated polymers resolved by scanning kelvin probe microscopy. Phys Rev Lett 103:256803

    Article  Google Scholar 

  20. Mullen K, Scherf U (2006) Organic light-emitting devices. Wiley, New York

    Google Scholar 

  21. Finlayson CE, Whitney AD (2010) Photophysical studies of poly-isocyanopeptide based photovoltaic blends. J Phys D 43:095501

    Article  Google Scholar 

  22. McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC (2007) Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: balancing charge generation and separation. J Phys Chem C 111:19153–19160

    Article  Google Scholar 

  23. Moulé AJ, Bonekamp JB, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100:094503

    Article  Google Scholar 

  24. Commission Internationale de l’Eclairage (CIE) Proceedings of 1931 (1932). Cambridge University Press, Cambridge

  25. Menke SM, Pandey R, Holmes RJ (2012) Tandem organic photodetectors with tunable, broadband response. Appl Phys Lett 101:223301

    Article  Google Scholar 

  26. Kawano K, Pacios P, Poplavskyy D, Nelson J, Bradley DDC, Durrant JR (2006) Degradation of organic solar cells due to air exposure. Sol Energy Mater Sol Cells 90:3520–3530

    Article  Google Scholar 

  27. Liang YY, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  Google Scholar 

  28. Yuan Y, Huang J, Li G (2011) Intermediate layers in tandem organic solar cells. Green 1:65–80

    Article  Google Scholar 

  29. Lange A, Wegener M, Fischer B, Janietz S, Wedel A (2012) Solar cells with inkjet printed polymer layers. Energy Procedia 31:150–158

    Article  Google Scholar 

  30. Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Printing highly efficient organic solar cells. Nano Lett 8:2806–2813

    Article  Google Scholar 

  31. Søndergaard RR, Hösel M, Krebs FC (2012) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci B 51:16–34

    Article  Google Scholar 

  32. Søndergaard RR, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    Article  Google Scholar 

  33. Frederik C, Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M (2014) Rise to power—OPV-based solar parks. Adv Mater 26:29–39

    Article  Google Scholar 

  34. Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42:266–297. doi:10.1007/s10853-006-0842-9

    Article  Google Scholar 

  35. Muhammad NM, Sundharam S, Dang H-W, Lee A, Ryu B-H, Choi K-H (2011) CIS layer deposition through electrospray process for solar cell fabrication. Curr Appl Phys 11:S68–S75

    Article  Google Scholar 

  36. Sun Y, Welch GC, Leong W-L, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11:44–48

    Article  Google Scholar 

  37. Tang ML, Reichardt AD, Nobuyuki M, Stoltenberg RM, Bao Z (2008) Ambipolar, high performance, acene-based organic thin film transistors. J Am Chem Soc 130:6064–6065

    Article  Google Scholar 

  38. Wang T, Scarratt NW, Yi H et al (2013) Fabricating high performance, donor–acceptor copolymer solar cells by spray-coating in air. Adv Energy Mater 3:512–515

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr Matt Gunn of Aberystwyth University for advice and technical assistance. The authors acknowledge Cambridge Display Technology (CDT Ltd) for the supply of materials used in this work, and Scanwel Ltd for technical support with AFM measurements. This work was supported by a Royal Society (UK) Research Grant (RG110313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris E. Finlayson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noebels, M., Cross, R.E., Evans, D.A. et al. Characterization of spray-coating methods for conjugated polymer blend thin films. J Mater Sci 49, 4279–4287 (2014). https://doi.org/10.1007/s10853-014-8123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8123-5

Keywords

Navigation