Skip to main content
Log in

Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we report a novel PtSe2/graphene nanocomposite by facile ultrasonic-assisted techniques. The “as-prepared” nanocomposites were further characterized by various techniques such as X-ray diffraction, scanning electron microscopy with an energy dispersive X-ray analysis, transmission electron microscopy, UV–Vis absorbance spectra analysis, diffuse reflectance analysis, and Raman spectroscopic analysis. The photocatalytic activities of the composites were investigated by the degradation of rhudamine B and methylene blue as a standard dyes. The photodegradation rates of organic dyes by the nanocomposites are found to be markedly high. This study suggests that the as-prepared PtSe2/graphene composite can be utilized as highly efficient photocatalyst materials that employed visible light as an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5

    Article  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  3. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 10:3498–3502

    Article  Google Scholar 

  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Honec J (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–3155

    Article  Google Scholar 

  6. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  Google Scholar 

  7. Zhang KJ, Liu XH (2011) One step synthesis and characterization of CdS nanorod/graphene nanosheet composite. Appl Surf Sci 257:10379–10383

    Article  Google Scholar 

  8. Zhao XM, Zhou SW, Jiang LP, Hou WH, Shen QM, Zhu JJ (2012) Graphene–Cds nanocomposites: facile one-step synthesis and enhanced photoelectrochemical cytosensing. Chem Eur J 18:4974–4981

    Article  Google Scholar 

  9. Jia L, Wang DH, Huang YX, Xu AW, Yu HQ (2011) Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J Phys Chem C 115:11466–11473

    Article  Google Scholar 

  10. Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L (2010) Aqueous-processable noncovalent chemically converted graphene–quantum dot composites for flexible and transparent optoelectronic films. Adv Mater 22(5):638–642

    Article  Google Scholar 

  11. Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A facile one step method to produce graphene–CdS quantum dots nanocomposites as a promising optoelectronics material. Adv Mater 22:103–106

    Article  Google Scholar 

  12. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrids for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  Google Scholar 

  13. Chu J, Li X, Xu P (2011) Fluorescent features of CdTe nanorods grafted to graphene oxide through an amidation process. J Mater Chem 21:11283–11287

    Article  Google Scholar 

  14. Manga KK, Wang S, Jaiswal M, Bao Q, Loh KP (2010) High-grain graphene-titanium oxide photoconductor made from inject printable ionic solution. Adv Mater 22:5265–5270

    Article  Google Scholar 

  15. Yang H, Guai GH, Guo C, Song Q, Jiang SP, Wang Y, Zhang W, Li CM (2011) NiO/Graphene composite for enhanced charge separation and collection in p-Type dye sensitized solar cell. J Phys Chem C 115:12209–12215

    Article  Google Scholar 

  16. Liang YY, Li YG, Wang HL, Zhou JG, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  17. Zhang XY, Li HP, Cui XL, Lin YH (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    Article  Google Scholar 

  18. Abdullah AZ, Ling PY (2010) Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J Hazard Mater 173:159–167

    Article  Google Scholar 

  19. Ullah K, Ye S, Zhu L, Meng ZD, Sarkar S, Oh WC (2014) Microwave assisted synthesis of noble-metal graphene hybrid photocatalyst for high efficient decomposition of organic dyes under visible light. Mater Sci Eng B 180:20–26

    Article  Google Scholar 

  20. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  Google Scholar 

  21. Meng ZD, Zhu L, Ghosh T, Park CY, Ullah K, Nikam V, Oh WC (2012) Ag2Se–grephene/TiO2 nanocomposite son chemical synthesis and enhanced photocatalytic properties under visible light. Bull Korean Chem 11:3761–3766

    Article  Google Scholar 

  22. Dong Z, Vasilii IA, Boris IY, Xu Z (2013) Pseudo Hall–Petch strength reduction in polycrystalline graphene. Nano Lett 3(4):1829–1833

    Google Scholar 

  23. Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 91:1326–1337

    Article  Google Scholar 

  24. Guo Q, Kim SJ, Kar M, Shafarman WN, Birkmire RW, Stach EA, Agrawal R, Hillhouse HW (2008) Development of CuInSe2 nanocrystal and nanoring inks for low cast solar cell. Nano Lett 8:2982–2987

    Article  Google Scholar 

  25. Zhang X, Tang Y, Li T, Wang Y, Liu X, Liu C, Luo S (2013) Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol. Appl Catal A 457:78–84

    Article  Google Scholar 

  26. Al-Kuhaili MF, Kayani A, Durrani SMA, Bakhtiari IA, Haider MB (2013) Band gap engineering of Zinc Selenide thin films through alloying with Cadmium Telluride. ACS Appl Mater Interfaces 5:5366–5372

    Article  Google Scholar 

  27. Ullah K, Meng ZD, Ye S, Zhu L, Oh WC (2013) Synthesis and characterization of novel PbS-Graphene/TiO2 composite with enhanced photocatalytic activity. J Ind Eng Chem. doi:10.1016/j.jiec.2013.06.040

    Google Scholar 

  28. Rao R, Podila R, Tsuchikawa R, Katoch R, Tishler J, Rao D, Ishigami AM (2011) Effects of layer stacking on the combination of the Raman modes in graphene. ACS Nano 5:1594–1599

    Article  Google Scholar 

  29. Kudin K, Ozbas B, Schniepp H, Prud’homme R, Aksay I, Car R (2008) Raman spectra of graphite oxide and functionalized graphene. Nano Lett 1, 8:36–41

    Article  Google Scholar 

  30. Yoon I, Kim C-D, Min B-K, Kim Y-K, Kim B, Jung W-S (2009) Characterization of graphene sheets formed by the reaction of carbon monoxide with aluminum sulfide. Bull Korean Chem Soc 30:3045–3048

    Article  Google Scholar 

  31. Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421

    Article  Google Scholar 

  32. Kamat PV (2010) Graphene-based nanoarchitectures: anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527

    Article  Google Scholar 

  33. Stankovich S, Dikin DA, Dommett GH, Kohlhass BK, Zimney ME, Stach JE, Piner AD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  34. Ghosh T, Oh WC (2012) Review on reduced grapheme oxide by chemical exfoliation method and its simpler alternative of ultrasonication and heat treatment method for obtaining grapheme. J Photocatal Sci 3(1):17–23

    Google Scholar 

  35. Shixiong M, Gongxuan L (2012) Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution. Int J Hydrogen Energy 37:10564–10574

    Article  Google Scholar 

  36. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. J Water Res 40:1119–1126

    Article  Google Scholar 

  37. Ullah K, Zhu L, Meng ZD, Ye S, Sun Q, Oh WC (2013) A Facile and fast synthesis of novel composite Pt-Graphene/TiO2 with enhanced photocatalytic activity under UV–Vis light. Chem Eng J 231:76–83

    Article  Google Scholar 

  38. Kamat P (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251

    Article  Google Scholar 

  39. Yu Y, Ma LL, Huang WY, Du FP, Yu JC, Yu JG (2005) Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon 43:670–673

    Article  Google Scholar 

  40. Deng C, Hub H, Ge X, Han C, Zhoa D, Shao G (2011) One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem 19:932–937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, K., Zhu, L., Meng, ZD. et al. Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J Mater Sci 49, 4139–4147 (2014). https://doi.org/10.1007/s10853-014-8109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8109-3

Keywords

Navigation