Skip to main content
Log in

Degradation mechanism of an H2-permselective amorphous silica membrane

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Degradation mechanism of H2 permselectivity under atmosphere of steam/N2 = 3 at 773 K was investigated among amorphous silica membranes on γ-Al2O3-coated α-Al2O3 or Ni-doped γ-Al2O3-coated α-Al2O3 synthesized by counter diffusion chemical vapor deposition. Helium and H2 permeance drastically decreased during the first few hours of hydrothermal exposure. On the other hand, N2 permeance fluctuated during hydrothermal treatment in silica membrane on γ-Al2O3-coated α-Al2O3. The degree of N2 permeance change depended on the hydrothermal stability of the intermediate layer. Hydrogen permselectivity was affected by both the densification of amorphous silica and the sintering of the intermediate layer during hydrothermal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kikuchi E (2000) Membrane reactor application to hydrogen production. Catal Today 56:97–101

    Article  Google Scholar 

  2. Kikuchi E, Nemoto Y, Kajikawa M, Uemiya S, Kojima T (2000) Steam reforming of methane in membrane reactors: comparison of electroless-plating and CVD membranes and catalyst packing modes. Catal Today 56:75–81

    Article  Google Scholar 

  3. Okubo T, Inoue H (1989) Single gas permeation through porous glass modified with tetraethoxysilane. AIChE J 35:845–848

    Article  Google Scholar 

  4. Uhlhorn RJR, Keizer K, Burggraaf AJ (1992) Gas transport and separation with ceramics membranes. Part II: synthesis and separation properties of microporous membranes. J Membr Sci 66:271–287

    Article  Google Scholar 

  5. Nam SW, Gavalas GR (1989) Stability of H2-permselective SiO2 films formed by chemical vapor deposition. AIChE Sym Ser 85:68–74

    Google Scholar 

  6. Gavalas GR, Megiris CE, Nam SW (1989) Deposition of H2-permselective SiO2 films. Chem Eng Sci 44:1829–1835

    Article  Google Scholar 

  7. Tsapatsis M, Kim S, Nam SW, Gavalas GR (1991) Synthesis of hydrogen permselective SiO2, TiO2, Al2O3, and B2O3 membranes from the chloride precursors. Ind Eng Chem Res 30:2152–2159

    Article  Google Scholar 

  8. Megiris CE, Glezer JHE (1992) Synthesis of H2-permselective membranes by modified chemical vapor deposition, microstructure and permselectivity of SiO2/C/Vycor membranes. Ind Eng Chem Res 31:1293–1299

    Article  Google Scholar 

  9. Ha HY, Nam SW, Hong SA, Lee WK (1993) Chemical vapor deposition of hydrogen-permselective silica films on porous glass supports from tetraethyl orthosilicate. J Membr Sci 85:90–297

    Google Scholar 

  10. Yan S, Maeda H, Kusakabe K, Morooka S, Akiyama Y (1994) Hydrogen-permselective SiO2 membranes formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind Eng Chem Res 33:2096–2101

    Article  Google Scholar 

  11. Nijimeijer A, Bladergroen BJ, Verweij H (1998) Low-temperature CVI modification of γ-alumina membranes. Microporous Mesoporous Mater 25:179–184

    Article  Google Scholar 

  12. Li D, Hwang ST (1991) Preparation and characterization of silicon based inorganic membrane for gas separation. J Membr Sci 59:331–352

    Article  Google Scholar 

  13. Iwamoto Y, Sato K, Kato T, Inada T, Kubo Y (2005) A hydrogen-permselective amorphous silica membrane derived from polysilazane. J Eur Ceram Soc 25:257–264

    Article  Google Scholar 

  14. Hwang GJ, Onuki K, Shimizu S (1998) Structure on hydrogen separation membrane for IS process, membrane preparation with porous α-alumina tube. JAERI Res 98–002:1–8

    Google Scholar 

  15. Cameron MA, Gartland IP, Smith JA, Diaz SF, George SM (2000) Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surfaces species on gas transport. Langmuir 16:7435–7444

    Article  Google Scholar 

  16. Velleman L, Shapter JG, Triani G, Evans PJ, Atanacio A, Shapter JG, Losic D (2008) Atomic layer deposition of SiO2 on porous alumina membranes: controlling the pore size and transport properties vol. 7267. In: Proceedings of SPIE, pp 72670S.1–72670S.8

  17. McCool BA, DeSisto WJ (2004) Synthesis and characterization of silica membranes prepared by pyridine-catalyzed atomic layer deposition. Ind Eng Chem Res 43:2478–2484

    Article  Google Scholar 

  18. Nomura M, Ono K, Gopalakrishnan S, Sugawara T, Nakao SI (2005) Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J Membr Sci 251:151–158

    Article  Google Scholar 

  19. Nagano T, Fujisaki S, Sato K, Hataya K, Iwamoto Y, Nomura M, Nakao SI (2008) Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition. J Am Ceram Soc 91:71–76

    Google Scholar 

  20. Tsapatsis M, Gavalas G (1994) Structure and aging characteristics of H2-permselective SiO2–vycor membranes. J Membr Sci 87:281–296

    Article  Google Scholar 

  21. Gallaher GR, Liu PKT (1994) Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commercial 40 Å membranes. J Membr Sci 92:29–44

    Article  Google Scholar 

  22. Nomura M (2007) Stability of H2-permselective SiO2 films formed by chemical vapor deposition. Membrane 32:340–346

    Google Scholar 

  23. MdH Zahir, Sato K, Mori H, Iwamoto Y, Nomura M, Nakao SI (2006) Preparation and properties of hydrothermally stable γ-alumina-based composite mesoporous membranes. J Am Ceram Soc 89:2874–2880

    Google Scholar 

  24. Zahir MdH, Sato K, Iwamoto Y (2005) Development of hydrothermally stable sol–gel derived La2O3-doped Ga2O3–Al2O3 composite mesoporous membrane. J Membr Sci 247:95–101

    Article  Google Scholar 

  25. Zahir MdH, Ikuhara YH, Fujisaki S, Sato K, Nagano T, Iwamoto Y (2007) Preparation and characterization of mesoporous ceria–zirconia–alumina nanocomposite with high hydrothermal stability. J Mater Res 22:3201–3209

    Article  Google Scholar 

  26. Nagano T, Sato K, Saitoh T, Takahashi S (2009) Hydrothermal stability of mesoporous Ni-doped γ-Al2O3. J Ceram Soc Jpn 117:832–835

    Article  Google Scholar 

  27. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  28. Kanezashi M, Asaeda M (2006) Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J Membr Sci 271:86–93

    Article  Google Scholar 

  29. Yoshino Y, Ando Y, Taguchi H, Ito N (2008) Selection of CVD source of H2-permselective amorphous silica for hydrothermal stability. J Chem Eng 34:242–248

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Japan Science and Technology Agency. Authors would like to thank Dr. Fujisaki for TEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Nagano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagano, T., Sato, K. Degradation mechanism of an H2-permselective amorphous silica membrane. J Mater Sci 49, 4115–4120 (2014). https://doi.org/10.1007/s10853-014-8105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8105-7

Keywords

Navigation