Skip to main content
Log in

Preparation of high-temperature resistant aluminum-doped silica aerogel from aluminum sol source by ambient pressure drying

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The preparation of aluminum-doped silica aerogel (ASA) typically utilizes alumina alkoxides or inorganic aluminum salts as precursors usually hindered by high cost or precursor instability. In this study, we prepared a high-temperature resistant ASA via the sol-gel and atmospheric pressure drying (APD) method, utilizing an inexpensive aluminum sol as the aluminum source, tetraethyl orthosilicate (TEOS) and basic silica sol as the composite silicon source. The effects of the Al/Si molar ratio and calcination temperature on the structure, morphology, and thermal stability of ASA were investigated. The results revealed that ASA-0.2 (with an Al/Si molar ratio of 0.2) exhibited a specific surface area of 616.3 m2/g at room temperature, whereas ASA-0 was 508.2 m2/g. After calcination at 1000 °C for 2 h, ASA-0.2 maintained a significantly higher specific surface area (290.0 m2/g) compared to ASA-0 (23.9 m2/g). Mechanism analysis indicated that adding aluminum sol not only improved the strength of the aerogel skeleton but also inhibited the phase transition of silica, effectively enhancing the high-temperature resistance of the aerogel. The utilization of inexpensive and stable aluminum sol as a precursor presents a promising approach for the industrial production of heat-resistant aerogels.

Graphical Abstract

Highlights

  • The preparation of aluminum-doped silica aerogels from aluminum sol as the aluminum source is discussed for the first time.

  • The appropriate amount of aluminum sol can increase the specific surface area and optimize the pore structure of the aluminum-doped silica aerogels.

  • The addition of aluminum sol significantly improves the high-temperature resistance of silica aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li CD, Chen ZF, Dong WF, Lin LL, Zhu XM, Liu QS, Zhang Y, Zhai N, Zhou ZH, Wang YH, Chen BM, Ji YX, Chen XQ, Xu XC, Yang YF, Zhang HT (2021) A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517. https://doi.org/10.1016/j.jnoncrysol.2020.120517

    Article  CAS  Google Scholar 

  2. Villasmil W, Fischer LJ, Worlitschek J (2019) A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew Sust Energ Rev 103:71–84. https://doi.org/10.1016/j.rser.2018.12.040

    Article  CAS  Google Scholar 

  3. Liu YC, Wu HJ, Zhang YH, Yang JM, He FA (2020) Structure characteristics and hygrothermal performance of silica aerogel composites for building thermal insulation in humid areas. Energy Build 228:110452.110451–110452.110458. https://doi.org/10.1016/j.enbuild.2020.110452

    Article  Google Scholar 

  4. Dou LY, Zhang XX, Cheng XT, Ma ZM, Wang XQ, Si Y, Yu JY, Ding B (2019) Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl Mater Interfaces 11:29056–29064. https://doi.org/10.1021/acsami.9b10018

    Article  CAS  Google Scholar 

  5. Feng JZ, Su BL, Xia HS, Zhao SY, Gao C, Wang LK, Ogbeide O, Feng J, Hasan T (2021) Printed aerogels: chemistry, processing, and applications. Chem Soc Rev 50:3842–3888. https://doi.org/10.1039/c9cs00757a

    Article  CAS  Google Scholar 

  6. Liu GW, Zhou B, Du A, Shen J, Yu QJ (2013) Effect of the thermal treatment on microstructure and physical properties of low-density and high transparency silica aerogels via acetonitrile supercritical drying. J Porous Mat 20:1163–1170. https://doi.org/10.1007/s10934-013-9699-x

    Article  CAS  Google Scholar 

  7. Lamy-Mendes A, Pontinha ADR, Alves P, Santos P, Duraes L (2021) Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr Build Mater 286:122815.122811–122815.122832. https://doi.org/10.1016/j.conbuildmat.2021.122815

    Article  CAS  Google Scholar 

  8. Guo JF, Tang GH, Jiang YG, Cai HF, Feng J, Feng JZ (2021) Inhibited radiation transmittance and enhanced thermal stability of silica aerogels under very-high temperature. Ceram Int 47:19824–19834. https://doi.org/10.1016/j.ceramint.2021.03.321

    Article  CAS  Google Scholar 

  9. Huang DM, Guo CN, Zhang MZ, Shi L (2017) Characteristics of nanoporous silica aerogel under high temperature from 950 C-omicron to 1200 C-omicron. Mater Des. 129:82–90. https://doi.org/10.1016/j.matdes.2017.05.024

    Article  CAS  Google Scholar 

  10. An L, Wang JY, Petit D, Armstrong JN, Li CN, Hu Y, Huang YL, Shao ZF, Ren SQ (2020) A scalable crosslinked fiberglass-aerogel thermal insulation composite. Appl Mater Today 21:100843. https://doi.org/10.1016/j.apmt.2020.100843

    Article  Google Scholar 

  11. Linhares T, de Amorim MTP, Duraes L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7:22768–22802. https://doi.org/10.1039/c9ta04811a

    Article  CAS  Google Scholar 

  12. Liu RL, Dong X, Xie ST, Jia T, Xue YJ, Liu JC, Jing W, Guo AR (2019) Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem Eng J 360:464–472. https://doi.org/10.1016/j.cej.2018.12.018

    Article  CAS  Google Scholar 

  13. Zhang HM, Feng JZ, Li LJ, Jiang YG, Feng J (2022) Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator. RSC Adv 12:13783–13791. https://doi.org/10.1039/d2ra00276k

    Article  CAS  Google Scholar 

  14. Li MM, Chen X, Li XT, Dong J, Zhao X, Zhang QH (2022) Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv Fiber Mater 4:1267–1277. https://doi.org/10.1007/s42765-022-00175-2

    Article  CAS  Google Scholar 

  15. Peng F, Jiang YG, Feng J, Cai HF, Feng JZ, Li LJ (2021) Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem Eng J 411:128402. https://doi.org/10.1016/j.cej.2021.128402

    Article  CAS  Google Scholar 

  16. Zhong Y, Zhang JJ, Wu XD, Shen XD, Cui S, Lu CH (2017) Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity. J Sol-Gel Sci Technol 84:129–134. https://doi.org/10.1007/s10971-017-4485-x

    Article  CAS  Google Scholar 

  17. Wu Y, Wang XD, Shen J (2023) Metal oxide aerogels for high-temperature applications. J Sol-Gel Sci Technol 106:360–380. https://doi.org/10.1007/s10971-021-05720-w

    Article  CAS  Google Scholar 

  18. Shalygin AS, Kozhevnikov IV, Gerasirnov EY, Andreev AS, Lapina OB, Martyanov ON (2017) The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous Mesoporous Mat 251:105–113. https://doi.org/10.1016/j.micromeso.2017.05.053

    Article  CAS  Google Scholar 

  19. Yang Z, Li H, Niu G, Wang J, Zhu D (2021) Poly(vinylalcohol)/chitosan-based high-strength, fire-retardant and smoke-suppressant composite aerogels incorporating aluminum species via freeze drying. Compos Part B Eng 219:108919.108911–108919.108914. https://doi.org/10.1016/j.matchemphys.2021.125587

    Article  CAS  Google Scholar 

  20. Simón-Herrero C, Romero A, Valverde JL, Sánchez-Silva L (2018) Hydroxyethyl cellulose/alumina-based aerogels as lightweight insulating materials with high mechanical strength. J Mater Sci 53:1556–1567. https://doi.org/10.1007/s10853-017-1584-6

    Article  CAS  Google Scholar 

  21. Ji XF, Zhou Q, Qiu GB, Yue CS, Guo M, Chen FQ, Zhang M (2018) Preparation of monolithic silica-based aerogels with high thermal stability by ambient pressure drying. Ceram Int 44:11923–11931. https://doi.org/10.1016/j.ceramint.2018.03.261

    Article  CAS  Google Scholar 

  22. Wu XD, Shao GF, Cui S, Wang L, Shen XD (2016) Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42:874–882. https://doi.org/10.1016/j.ceramint.2015.09.012

    Article  CAS  Google Scholar 

  23. Nesterov NS, Shalygin AS, Pakharukova VP, Glazneva TS, Martyanov ON (2019) Mesoporous aerogel-like Al-Si oxides obtained via supercritical antisolvent precipitation of alumina and silica sols. J Supercrit Fluids 149:110–119. https://doi.org/10.1016/j.supflu.2019.03.014

    Article  CAS  Google Scholar 

  24. Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2009) Effect of yttria on crystallization and microstructure of an alumina-YAG fiber prepared by aqueous sol-gel process. Ceram Int 35:391–396. https://doi.org/10.1016/j.ceramint.2007.11.010

    Article  CAS  Google Scholar 

  25. Tan HB, Ding YP, Yang JF (2010) Mullite fibers prepared from an inorganic sol-gel precursor. J Sol-Gel Sci Technol 53:378–383. https://doi.org/10.1007/s10971-009-2106-z

    Article  CAS  Google Scholar 

  26. Li M, Jiang HY, Xu D, Hai O, Zheng W (2016) Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. J Non-Cryst Solids 452:187–193. https://doi.org/10.1016/j.jnoncrysol.2016.09.001

    Article  CAS  Google Scholar 

  27. Yao JQ, Gao XD, Wu YQ, Zhao X, Li XM (2022) High-temperature resistant ambient pressure-dried aluminum doped silica aerogel from inorganic silicon and aluminum sources. Ceram Int 48:15006–15016. https://doi.org/10.1016/j.ceramint.2022.02.029

    Article  CAS  Google Scholar 

  28. Jadhav SB, Makki A, Hajjar D, Sarawade PB (2022) Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection. J Porous Mat 29:957–969. https://doi.org/10.1007/s10934-022-01231-3

    Article  CAS  Google Scholar 

  29. Zhang XY, Chen ZF, Zhang JX, Ye XL, Cui S (2021) Hydrophobic silica aerogels prepared by microwave irradiation. Chem Phys Lett 762:138127. https://doi.org/10.1016/j.cplett.2020.138127

    Article  CAS  Google Scholar 

  30. Bo C, Xisheng X, Xiaoming C, Lingjun K, Diyun C (2018) Transformation behavior of gibbsite to boehmite by steam-assisted synthesis. Jf Solid State Chem 265:237–243. https://doi.org/10.1016/j.jssc.2018.06.010

    Article  CAS  Google Scholar 

  31. Hai C, Zhang L, Zhou Y, Ren X, Liu J, Zeng J, Ren H, Polymers O, Materials (2018) Phase transformation and morphology evolution characteristics of hydrothermally prepared boehmite particles. J Inorg 28:1–8. https://doi.org/10.1007/s10904-017-0756-9

    Article  CAS  Google Scholar 

  32. Cai HF, Jiang YG, Feng J, Zhang SZ, Peng F, Xiao YY, Li LJ, Feng JZ (2020) Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater Des 191:108640. https://doi.org/10.1016/j.matdes.2020.108640

    Article  CAS  Google Scholar 

  33. Lee KJ, Choe YJ, Kim YH, Lee JK, Hwang HJ (2018) Fabrication of silica aerogel composite blankets from an aqueous silica aerogel slurry. Ceram Int 44(2):2204–2208. https://doi.org/10.1016/j.ceramint.2017.10.176

    Article  CAS  Google Scholar 

  34. Eris G, Sanli D, Ulker Z, Bozbag SE, Jonas A, Kiraz A, Erkey C (2013) Three-dimensional optofluidic waveguides in hydrophobic silica aerogels via supercritical fluid processing. J Supercrit Fluids 73:28–33. https://doi.org/10.1016/j.supflu.2012.11.001

    Article  CAS  Google Scholar 

  35. Lee KJ, Kang Y, Kim YH, Baek SW, Hwang H (2020) Synthesis of silicon carbide powders from methyl-modified silica aerogels. Appl Sci 10(18):6161. https://doi.org/10.3390/app10186161

    Article  CAS  Google Scholar 

  36. Yu H, Zongwei T, Yue S, Li X, Ji H (2020) Effect of SiO2 deposition on thermal stability of Al2O3-SiO2 aerogel. J Eur Ceram Soc 41(1):580–589. https://doi.org/10.1016/j.jeurceramsoc.2020.09.015

    Article  CAS  Google Scholar 

  37. Bhagat SD, Rao AV (2006) Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process. Appl Surf Sci 252(12):4289–4297. https://doi.org/10.1016/j.apsusc.2005.07.006

    Article  CAS  Google Scholar 

  38. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2007) Rapid synthesis of water-glass based aerogels by in situ surface modification of the hydrogels. Appl Surf Sci 253(6):3231–3236. https://doi.org/10.1016/j.apsusc.2006.07.016

    Article  CAS  Google Scholar 

  39. Yin X, Wu J, Gao P, Guan K, Peng C (2019) Effect of boehmite sol on the performance of alumina microfiltration membranes - sciencedirect. Ceram Int 45(13):16173–16179. https://doi.org/10.1016/j.ceramint.2019.05.138

    Article  CAS  Google Scholar 

  40. Osaki T, Nagashima K, Watari K, Tajiri K (2007) Silica-doped alumina cryogels with high thermal stability. J Non-Cryst Solids 353(24-25):2436–2442. https://doi.org/10.1016/j.jnoncrysol.2007.04.016

    Article  CAS  Google Scholar 

  41. Shalygin AS, Kozhevnikov IV, Gerasirnov EY, Andreev AS, Lapina OB, Martyanov ON (2017) The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous Mesoporous Mater 251:105–113. https://doi.org/10.1016/j.micromeso.2017.05.053

    Article  CAS  Google Scholar 

  42. Xia CK, Hao MY, Liu WH, Zhang XY, Miao Y, Ma C, Gao F (2023) Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity. J Sol-Gel Sci Technol 106:561–571. https://doi.org/10.1007/s10971-023-06085-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express our gratitude to the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing at Wuhan University of Technology for facilitating the tests. We are also indebted to Prof. Hongyi Jiang for his invaluable guidance throughout the research process. Additionally, our sincere thanks go to the students within our group for their continual assistance and support.

Author contributions

SG designed the experimental program, conducted the experimental investigations, and wrote the main manuscript text. TY and SL were responsible for the query of research background data. KL, ZC and WP assisted in the experimental operation. HJ guided experimental design and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Yang, T., Liu, S. et al. Preparation of high-temperature resistant aluminum-doped silica aerogel from aluminum sol source by ambient pressure drying. J Sol-Gel Sci Technol 109, 162–173 (2024). https://doi.org/10.1007/s10971-023-06254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06254-z

Keywords

Navigation