Skip to main content

Hydrogen Production by Hydrogen Iodine Decomposition Assisted with Membrane

  • Chapter
  • First Online:
CO2 Free Ammonia as an Energy Carrier

Abstract

In order to improve the low equilibrium of the HI decomposition, a membrane reactor assisted with H2 permselective membrane was developed. Silica membranes and stable HI decomposition catalysts have been investigated for the membrane reactor. Silica membranes were prepared on porous ceramic tubes by using a counter diffusion chemical vapor deposition. The membrane deposited at 450 °C showed the H2 permeance of 5.0 × 10–7 mol m−2 s−1 Pa−1 with the H2/HI permeance ratio of 6820. For HI decomposition catalysts, Pt–Rh/TiO2/active carbon showed high conversion and stability. This catalyst shows HI decomposition conversion, ca.95% of the equilibrium conversion which was sustained up to 200 h. Finally, membrane reactor test was conducted to improve the HI decomposition reaction at 400 °C. The conversion was stable at about 0.48 by the assist with the H2 permselective membrane and the conversion was higher than the equilibrium one (0.22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasahara S (2003) Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water. J Chem Eng Jpn 36:887–899

    Article  CAS  Google Scholar 

  2. Uemiya S (1999) State-of-the-art of supported metal membranes for gas separation. Sep Purif Methods 28:51–85

    Article  CAS  Google Scholar 

  3. Williams GA, Ferguson JB (1922) The diffusion of hydrogen and helium through silica glass and other glasses. J Am Chem Soc 44:2160–2167

    Article  CAS  Google Scholar 

  4. Kitao S, Asaeda M (1990) Separation of organic acid/water mixtures by thin porous silica membrane. J Chem Eng Jpn 23:367–370

    Article  CAS  Google Scholar 

  5. Gavalas GR (1989) Deposition of H2-permselective SiO2 films. Chem Eng Sci 44:1829–1835

    Article  CAS  Google Scholar 

  6. Sea BK (1996) Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery from a mixture containing steam. Gas Sep Purif 10:187–195

    Article  CAS  Google Scholar 

  7. Lee D (2004) Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. J Membr Sci 231:117–126

    Article  CAS  Google Scholar 

  8. Nakao S (2000) Preparation of microporous membranes by TEOS/O3 CVD in the opposing reactants geometry. Micropor Mesopor Mater 37:145–152

    Article  CAS  Google Scholar 

  9. O’keefe DR, Norman JH, Williamson DG (1980) Catalysis research in thermochemical water-splitting processes. Catal Rev: Sci Eng 22(3):325–369

    Article  Google Scholar 

  10. Nomura M, Kasahara S, Nakao S (2004) Silica membrane reactor for the thermochemical iodine-sulfur process to produce hydrogen. Ind Eng Chem Res 43:5874–5879

    Article  CAS  Google Scholar 

  11. Hwang GJ, Onuki K (2001) Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water splitting IS process. J Membr Sci 194:207–215

    Article  CAS  Google Scholar 

  12. Myagmarjav O (2017) Preparation of an H2-permselective silica membrane for the separation of H2 from the hydrogen iodide decomposition reaction in the iodine-sulfur process. Int J Hydrogen Energy 42:6012–6023

    Article  CAS  Google Scholar 

  13. Myagmarjav O (2017) Hydrogen production tests by hydrogen iodide decomposition membrane reactor equipped with silica-based ceramics membrane. Int J Hydrogen Energy 42:29091–29100

    Article  CAS  Google Scholar 

  14. Hwang G (2000) Separation of hydrogen from a H2–H2O–HI gaseous mixture using a silica membrane. AIChE J 46:92–98

    Article  CAS  Google Scholar 

  15. Nomura M (2004) Silica membrane reactor for the thermochemical Iodine-Sulfur process to produce hydrogen. Ind Eng Chem Res 43:5874–5879

    Article  CAS  Google Scholar 

  16. Nomura M (2005) Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J Membr Sci 251:151–158

    Article  CAS  Google Scholar 

  17. Matsuyama E (2014) High temperature propylene/propane separation through silica hybrid membranes. Sep Purif Tech 128:25–30

    Article  CAS  Google Scholar 

  18. Ikeda A (2015) High hydrogen permeance silica membranes prepared by a chemical vapor deposition method. J Membr Sep Tech 4:66–73

    Article  CAS  Google Scholar 

  19. Nomura M (2007) Pore size control of a molecular sieve silica membrane prepared by a counter diffusion CVD method. J Chem Eng Jpn 40:1235–1241

    Article  Google Scholar 

  20. Lee HR (2010) Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation. AIChE J 57:2755–2765

    Article  Google Scholar 

  21. Kim JM (2008) Decomposition of hydrogen iodide on Pt/C-based catalysts for hydrogen production. Int J Hydrogen Energy 33:4974–4980

    Article  CAS  Google Scholar 

  22. Tyagi D, Varma S, Bharadwaj SR (2015) Pt/graphite catalyst for hydrogen generation by HI decomposition reaction in S–I thermochemical cycle. Int J Energy Res 39:2008–2018

    Article  CAS  Google Scholar 

  23. Tyagi D (2012) Development of Pt-Carbon catalysts using MCM-41 template for HI decomposition reaction in S–I thermochemical cycle. Int J Hydrogen Energy 37:3602–3611

    Article  CAS  Google Scholar 

  24. Wang L (2013) Comparisons of Pt catalysts supported on active carbon, carbon molecular sieve, carbon nanotubes and graphite for HI decomposition at different temperature. Int J Hydrogen Energy 38:109–116

    Article  Google Scholar 

  25. Bo Z (2014) Metal-free and Pt-decorated graphene-based catalysts for hydrogen production in a sulfur−iodine thermochemical cycle. Ind Eng Chem Res 53:11920–11928

    Article  CAS  Google Scholar 

  26. Tyagi D, Varma S, Bharadwaj SR (2015) Pt/zirconia catalyst for hydrogen generation from HI decomposition reaction of S–I cycle. Int J Energy Res 39:484–493

    Article  CAS  Google Scholar 

  27. Chen Y (2010) Platinum–ceria–zirconia catalysts for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 35:445–451

    Article  CAS  Google Scholar 

  28. Zhan Y (2008) Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur–iodine cycle. Int J Hydrogen Energy 33:2211–2217

    Article  Google Scholar 

  29. Favuzza P (2009) Decomposition of hydrogen iodide in the S–I thermochemical cycle over Ni catalyst systems. Int J Hydrogen Energy 34:4049–4056

    Article  CAS  Google Scholar 

  30. Hu S (2016) Activity and stability of monometallic and bimetallic catalysts for high-temperature catalytic HI decomposition in the iodine-sulfur hydrogen production cycle. Int J Hydrogen Energy 41:773–783

    Article  CAS  Google Scholar 

  31. Wang Z (2010) Decomposition of hydrogen iodide over Pt–Ir/C bimetallic catalyst. Int J Hydrogen Energy 35:8862–8867

    Article  CAS  Google Scholar 

  32. Li D (2013) Effects of the composition on the active carbon supported Pd–Pt bimetallic catalysts for HI decomposition in the Iodine-sulfur cycle. Int J Hydrogen Energy 38:6586–6592

    Article  CAS  Google Scholar 

  33. Wang L (2014) Effects of the second metals on the active carbon supported Pt catalysts for HI decomposition in the iodine-sulfur cycle. Int J Hydrogen Energy 39:14161–14165

    Article  CAS  Google Scholar 

  34. Singhania A (2018) Hydrogen-iodide decomposition over Pd–CeO2 nanocatalyst for hydrogen production in sulfur iodine thermochemical cycle. Int J Hydrogen Energy 43:3886–3891

    Article  CAS  Google Scholar 

  35. Zhang Y (2008) Effect of preparation method on platinum–ceria catalysts for hydrogen iodide decomposition in sulfur–iodine cycle. Int J Hydrogen Energy 33:602–607

    Article  CAS  Google Scholar 

  36. Singhania A (2018) Catalytic decomposition of hydrogen-iodide over nanocrystalline ceria promoted by transition metal oxides for hydrogen production in sulfur–iodine thermo-chemical cycle. Catal Lett 148:1416–1422

    Article  CAS  Google Scholar 

  37. Punkrawee W, Yamanaka A, Matsuda J, Mitoma Y, Nishiyama N, Ishihara T (2018) Pt-Ce0.9Cu0.1O2/activated carbon as highly active and stable HI decomposition catalyst. Int J Energy Res 42(3):1088–1097

    Google Scholar 

  38. Punkrawee W, Yamanaka A, Matsuda J, Mitoma Y, Nishiyama N, Ishihara T (2018) Pt-Rh/TiO2/activated carbon as highly active and stable HI decomposition catalyst for hydrogen production in sulfur-iodine (SI) process. Int J Energy Res 42(7):2494–2506

    Article  CAS  Google Scholar 

  39. Wang Z, Wang L, Chen S, Zhang P, Xu J, Chen J (2010) Decomposition of hydrogen iodide over Pt–Ir/C bimetallic catalyst. Int J Hydrogen Energy 35:8862–8867

    Article  CAS  Google Scholar 

  40. Okubo T, Inoue H (1989) Single gas permeation through porous glass modified with tetraethoxysilane. AIChE J 35:845–848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsumi Ishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nomura, M., Ishihara, T., Myagmarjav, O. (2023). Hydrogen Production by Hydrogen Iodine Decomposition Assisted with Membrane. In: Aika, Ki., Kobayashi, H. (eds) CO2 Free Ammonia as an Energy Carrier. Springer, Singapore. https://doi.org/10.1007/978-981-19-4767-4_14

Download citation

Publish with us

Policies and ethics