Skip to main content

Advertisement

Log in

A comparative study of pure nickel and the Ni–CeO2 nanocrystalline coatings: microstructural evolution, oxidation behavior, and thermodynamic stability

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a novel method of ultrasonic-assisted double-pulsed electro deposition was innovatively used to prepare nanocrystalline Ni coatings from a modified Watts–Nickel electrolyte without and with the addition of CeO2 nanoparticles. The dynamic oxidation kinetics of pure nickel and the Ni–CeO2 coatings was conducted in air at 650 and 850 °C. To clarify the beneficial effects of CeO2 addition on surface morphologies, phase composition and microstructural evolution, the as-received coatings were investigated using various analytical techniques of FE-SEM, XRD, XPS, and HR-TEM observations. In addition, both EDX maps and TG–DSC scans were also carried out for further evaluating the effective bonding effect that generated from the Ce-rich precipitated phase on the inhibition of coarsening growth and textural transformation. Meanwhile, an analytical model for predicting the growth mechanism of oxide scales was successfully validated for the comparison of their different oxidation behaviors. Experimental results illustrated that interfacial boundaries existed in nanocrystalline Ni coatings were favorable for embedding CeO2 nanoparticles to make dispersion strengthening. The existence of well-distributed CeO2 phase in the coating was beneficial to achieve finer-grained size of Ni grains for improvements of structural densification. It exhibited super oxidation resistance of the Ni–CeO2 coatings as compared to that of pure nickel, which was mainly attributed to the Ce-rich oxide scales that acted as a passive layer to fully cover on the coating surface. Furthermore, the precipitation of the Ce-rich phase along high-angle grain boundaries would make great contributions to promote the bonding interactions with high-energy defective regions for effectively completing those cracking boundaries, thereby achieving denser microstructure attached with excellent thermodynamic stability of the Ni–CeO2 coatings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Galinski H, Hütter AB, Rupp JLM, Gauckler LJ (2011) Nonlinear oxidation kinetics of nickel cermets. Acta Mater 59(16):6239–6245

    Article  Google Scholar 

  2. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci 43:7264–7272. doi:10.1007/s10853-008-2870-0

    Article  Google Scholar 

  3. Zhu HY, Wang W, Ran R, Shao ZP (2013) A new nickel–ceria composite for direct-methane solid oxide fuel cells. Int J Hydrog Energy 38(9):3741–3749

    Article  Google Scholar 

  4. Wang W, Qian SQ, Zhou XY (2010) Microstructure and oxidation-resistant of ZrO2/Ni coatings applied by high-speed jet electroplating. J Mater Sci 45:1617–1621. doi:10.1007/s10853-009-4137-9

    Article  Google Scholar 

  5. Xue YJ, Li JS, Ma W, Zhou YX, Duan MD (2006) Sliding wear behaviors of electrodeposited nickel composite coatings containing micrometer and nanometer La2O3 particles. J Mater Sci 41:1781–1784. doi:10.1007/s10853-006-3947-2

    Article  Google Scholar 

  6. Chang JT, Davison A, He JL, Matthews A (2006) Deposition of Ni–Al–Y alloy films using a hybrid arc ion plating and magnetron sputtering system. Surf Coat Technol 200(20–21):5877–5883

    Article  Google Scholar 

  7. Wang KL, Zhang QB, Sun ML, Wei XG, Zhu YM (2001) Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl Surf Sci 174:191–200

    Article  Google Scholar 

  8. Alijani F, Amini R, Ghaffari M, Alizadeh M, Okyay AK (2014) Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying. Mater Des 55:373–380

    Article  Google Scholar 

  9. Xue YJ, Jia XZ, Zhou YW, Ma W, Li JS (2006) Tribological performance of Ni–CeO2 composite coatings by electrodeposition. Surf Coat Technol 200(20–21):5677–5681

    Article  Google Scholar 

  10. Zhou Y, Peng X, Wang F (2006) Cyclic oxidation of alumina-forming Ni–Al nanocomposites with and without CeO2 addition. Scripta Mater 55(11):1039–1042

    Article  Google Scholar 

  11. Peng X, Li T, Pan WP (2001) Oxidation of a La2O3-modified aluminide coating. Scripta Mater 44(7):1033–1038

    Article  Google Scholar 

  12. Xue YJ, Shen C, Li JS, Liu Y (2011) Oxidation and wear resistance of Ni–Y2O3–ZrO2 nanocomposite coating prepared by ultrasonic electrodeposition. Key Eng Mater 455:427–430

    Article  Google Scholar 

  13. Ma Y, Cao QP, Qu SX, Zhang DX, Wang XD, Jiang JZ (2012) Stress-state-dependent deformation behavior in Ni–Nb metallic glassy film. Acta Mater 60(10):4136–4143

    Article  Google Scholar 

  14. Yang L, Pang X, Fox-Rabinovich G, Veldhuis S (2011) Electrodeposition of cerium oxide films and composites. Surf Coat Technol 206(1):1–7

    Article  Google Scholar 

  15. Rupp JLM, Gauckler LJ (2006) Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ion 177(26–32):2513–2518

    Article  Google Scholar 

  16. Hasannejad H, Shahrabi T, Jafarian M, Rouhaghdama AS (2011) EIS study of nano crystalline Ni–cerium oxide coating electrodeposition mechanism. J alloys Compd 509(5):1924–1930

    Article  Google Scholar 

  17. Rupp JLM, Infortuna A, Gauckler LJ (2006) Microstrain and self-limited grain growth in nanocrystalline ceria ceramics. Acta Mater 54(7):1721–1730

    Article  Google Scholar 

  18. Molins R, Normand B, Rannou G, Hannoyer B, Liao H (2003) Interlamellar boundary characterization in Ni-based alloy thermally sprayed coating. Mater Sci Eng A 351(1–2):325–333

    Article  Google Scholar 

  19. Aruna ST, Bindu CN, Ezhil Selvi V, William Grips VK, Rajam KS (2006) Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings. Surf Coat Technol 200(24):6871–6880

    Article  Google Scholar 

  20. Xue YJ, Liu HB, Lan MM, Li JS, Li H (2010) Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2 nanocomposite coating. Surf Coat Technol 204(21–22):3539–3545

    Article  Google Scholar 

  21. Rupp JLM, Scherrer B, Schäuble N, Gauckler LJ (2010) Time–Temperature–Transformation (TTT) diagrams for crystallization of metal oxide thin films. Adv Funct Mater 20(17):2807–2814

    Article  Google Scholar 

  22. Rupp JLM, Scherrer B, Gauckler LJ (2010) Engineering disorder in precipitation-based nano-scaled metal oxide thin films. Phys Chem Chem Phys 12(36):11114–11124

    Article  Google Scholar 

  23. Fan LD, Wang CY, Chen MM, Zhu B (2013) Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sources 234(1):154–174

    Article  Google Scholar 

  24. Domínguez-Crespo MA, Torres-Huerta AM, Brachetti-Sibaja B, Flores-Vela A (2011) Electrochemical performance of Ni–RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int J Hydrog Energy 36(1):135–151

    Article  Google Scholar 

  25. Mihalache V, Pasuk I (2011) Grain growth, microstructure and surface modification of textured CeO2 thin films on Ni substrate. Acta Mater 59(12):4875–4885

    Article  Google Scholar 

  26. Rupp JLM, Scherrer B, Harvey AS, Gauckler LJ (2009) Crystallization and grain growth kinetics for precipitation based ceramics: a case study on amorphous ceria thin films from spray pyrolysis. Adv Funct Mater 19(17):2790–2799

    Article  Google Scholar 

  27. Zhou XW, Shen YF, Zheng YY, Jin HM (2011) Mechanism and microstructure of nickel–ceria composite coatings prepared by pulse current deposition under the ultrasonic field. J Rare Earths 29(9):883–887

    Article  Google Scholar 

  28. Chafi Z, Keghouche N, Minot C (2007) DFT study of Ni–CeO2 interaction: adsorption and insertion. Surf Sci 601(11):2323–2329

    Article  Google Scholar 

  29. Sen RJ, Das S, Das K (2011) Effect of stirring rate on the microstructure and microhardness of Ni–CeO2 nanocomposite coating and investigation of the corrosion property. Surf Coat Technol 205(13–14):3847–3855

    Article  Google Scholar 

  30. Qu NS, Zhu D, Chan KC (2006) Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scripta Mater 54(7):1421–1425

    Article  Google Scholar 

  31. Kong LB, Zhang TS, Ma J, Boey F, Zhang RF (2004) Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2. J Alloys Compd 372(1–2):290–299

    Article  Google Scholar 

  32. Zhou XW, Shen YF (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 205(25):3847–3855

    Google Scholar 

  33. Liu HF, Chen WX (2005) Cyclic oxidation behaviour of electrodeposited Ni3Al–CeO2 base coatings at 850 °C. Oxid Met 64(9):331–354

    Article  Google Scholar 

  34. Fu SG, Wang H, Ga SZ (2003) High temperature oxidation behavior of a sputtered pure Ni nanocrystalline coating at 700–900 °C. Surf Coat Technol 167(2–3):212–216

    Google Scholar 

  35. Liu HF, Chen WX (2007) Cyclic oxidation behaviour of electrodeposited Ni3Al–CeO2 base coatings at 1050 °C. Corros Sci 49(9):3453–3478

    Article  Google Scholar 

  36. Sen RJ, Bhattacharya S, Das S, Das K (2010) Effect of surfactant on the coelectrodeposition of the nano-sized ceria particle in the nickel matrix. J Alloys Compd 489(2):650–658

    Article  Google Scholar 

  37. Sen RJ, Das S, Das K (2012) Influence of duty cycle on the microstructure and microhardness of pulse electrodeposited Ni–CeO2 nanocomposite coating. Mater Res Bull 47(2):478–485

    Article  Google Scholar 

  38. Peng X, Wang F (2006) Cyclic oxidation of alumina-forming Ni–Al nanocomposites with and without CeO2 addition. Scripta Mater 55(11):1039–1042

    Article  Google Scholar 

  39. Zhou YB, Hu HT, Zhang HJ (2011) Oxidation behavior of aluminide coatings on carbon steel with and without electrodeposited Ni–CeO2 film by low-temperature pack cementation. Vacuum 86(2):210–217

    Article  Google Scholar 

  40. Li J (2000) The microstructure and wear resistance characteristics of electroformed nickel and partially stabilized zirconia composite coatings. J Mater Sci 35(1751–1758):1004. doi:10.1023/A:780619429

    Google Scholar 

  41. Zhu L, Peng X, Yan J, Wang F (2004) Oxidation of a novel chromium coating with CeO2 dispersions. Oxid Met 62(5–6):411–426

    Article  Google Scholar 

  42. Giggins CS, Kear BH, Pettit FS, Tien JK (1974) Factors affecting adhesion of oxide scales on alloys. Metall Trans 5(7):1685–1688

    Article  Google Scholar 

  43. Oswald S, Bruckner W (2004) XPS depth profile analysis of non-stoichiometric NiO films. Surf Interface Anal 36(1):17–22

    Article  Google Scholar 

  44. Bernal S, Botana FJ, Calvino JJ, Cifredo GA, Perez-Omil JA, Pintado JM (1995) HRTEM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal Today 23(3):219–250

    Article  Google Scholar 

  45. Moriceau PB, Pennequin A, Grzybowska B, Barbaux Y (2003) Oxidative dehydrogenation of propane on Ni–Ce–O oxide: effect of the preparation method, effect of potassium addition and physical characterization. Appl Catal A 245(1):55–67

    Article  Google Scholar 

  46. Wang KL, Zhang QB, Sun ML, Wei XG, Zhu YM (2001) Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl Surf Sci 174(3–4):191–200

    Article  Google Scholar 

  47. Moon DP, Bennett MJ (1989) The effects of reactive element oxide coatings on the oxidation behavior of metals and alloys at high temperature. Mater Sci Forum 43:269–298

    Article  Google Scholar 

  48. Tien JK, Pettit FS (1972) Mechanism of oxide adherence on Fe–25Cr–4Al (Y or Sc) alloys. Metall Trans 3(6):1587–1599

    Article  Google Scholar 

  49. Duffy DM, Tasker PW (1986) Theoretical-studies of diffusion-processes down coincident tilt boundaries in NiO. Philos Mag A 54(6):759–771

    Article  Google Scholar 

  50. Ungar T, Ott S, Sanders PG, Borbeâly A, Weertman JR (1998) Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater 46(10):3693–3699

    Article  Google Scholar 

  51. Fu YP, Chen SH, Tsai FY, Hu SH (2009) Aqueous tape casting and crystallization kinetics of Ce0.8La0.2O1.9 powder. Ceram Int 35(2):609–615

    Article  Google Scholar 

  52. Fu YP, Liu YC, Hu SH (2009) Aqueous tape casting and crystallization behavior of gadolinium-doped ceria. Ceram Int 35(8):3153–3159

    Article  Google Scholar 

  53. Esposito V, Ni DW, He ZM, Zhang W, Prasad AS, Glasscock JA, Chatzichristodoulou C, Ramousse S, Kaiser A (2013) Enhanced mass diffusion phenomena in highly defective doped ceria. Acta Mater 61(16):6290–6300

    Article  Google Scholar 

  54. Harmsworth PD, Stevens R (1991) Microstructure and phase composition of ZrO2–CeO2 thermal barrier coatings. J Mater Sci 26:3991–3995. doi:10.1007/BF02402938

    Article  Google Scholar 

  55. Stringer J (1989) The reactive element effect in high–temperature corrosion. Mater Sci Eng A 120–121(1):129–137

    Article  Google Scholar 

  56. Kacher J, Elizage P, House SD, Hattar K, Nowell M, Robertson IM (2013) Thermal stability of Ni/NiO multilayers. Mater Sci Eng A 568:49–60

    Article  Google Scholar 

  57. Brandon JR, Taylor R (1989) Thermal properties of ceria and yttria partially stabilized zirconia thermal barrier coatings. Surf Coat Technol 39–40(1):143–151

    Google Scholar 

  58. Lan GQ, Wang YR, Jiang Y, Zhou HM, Yi DQ (2014) Effects of rare-earth dopants on the thermally grown Al2O3/Ni(Al) interface: the first-principles prediction. J Mater Sci 49:2640–2646. doi:10.1007/s10853-013-7968-3

    Article  Google Scholar 

  59. Andrievski RA (2014) Review of thermal stability of nanomaterials. J Mater Sci 49:1449–1460. doi:10.1007/s10853-013-7836-1

    Article  Google Scholar 

  60. Klement U, Erb U, EI–Sherik AM, Aust KT (1995) Thermal stability of nanocrystalline Ni. Mater Sci Eng A 203(1–2):177–186

    Article  Google Scholar 

  61. Kaur I, Gust W, Kozma L (1989) Handbook of grain and interphase boundary diffusion data. Ziegler Press, Stuttgart

    Google Scholar 

  62. Seal S, Bose SK, Roy SK (1994) Improvement in the oxidation behavior of austenitic stainless-steels by superficially applied, cerium oxide coatings. Oxid Met 41(1–2):139–178

    Article  Google Scholar 

  63. Seal S, Roy SK, Bose SK, Kuiry SC (2000) Ceria based high temperature coatings for oxidation prevention. JOM-e 52(1):1–8

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Funds for Central Universities and Jiangsu Innovation Program for Graduate Education (No. CXLX12_0151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Shen, Y. A comparative study of pure nickel and the Ni–CeO2 nanocrystalline coatings: microstructural evolution, oxidation behavior, and thermodynamic stability. J Mater Sci 49, 3755–3774 (2014). https://doi.org/10.1007/s10853-014-8087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8087-5

Keywords

Navigation