Skip to main content
Log in

Microstructure and High-Temperature Oxidation Properties of Nb2O5/TiO2 Composite Coatings Based on Ti6Al4V through Micro-arc Oxidation

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nb2O5/TiO2 composite coatings were prepared in sodium silicate electrolyte, and the high-temperature oxidation properties of the coatings were improved. SEM showed that the number of micro-pores on the surface of the coatings decreased, and the content of Nb2O5 increased from 0 to 9.45% with the increase in Nb2O5 concentration. The coatings comprised O, Na, Al, Si, P, K, Ti, and Nb. Nb entered and was uniformly distributed in the coatings, and its content increased from 0 to 13.76%. Meanwhile, the thickness of the coatings increased from 29.57 to 43.27 µm. The coatings comprised anatase-TiO2, rutile-TiO2, Nb2O5, and Al2TiO5. The valence of Nb was assigned to Nb2O5 and NbxOy. The average oxidation rate decreased from 2.4333 × 10−5 to 2.8056 × 10−6 mg cm−2 s−1. Nb2O5 in the coatings hindered the high-temperature oxidation process and improved the high-temperature properties of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Feng, R. Li, Y. Liu, L. Liu, W. Song, and F. Zhang, Aging Treatment Effect on Microstructure and Mechanical Properties of Ti-5Al-3V-1.5Mo-2Zr Titanium Alloy Drill Pipe, J. Mater. Eng. Perform., 2020, 29(11), p 7011–7025.

    Article  CAS  Google Scholar 

  2. H. Khanmohammadi, S.R. Allahkaram, A. Igual Munoz, and N. Towhidi, The Influence of Current Density and Frequency on the Microstructure and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on Ti6Al4V, J. Mater. Eng. Perform., 2017, 26(2), p 931–944.

    Article  CAS  Google Scholar 

  3. S. Paul and K. Yadav, Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies, J. Mater. Eng. Perform., 2010, 20(3), p 422–435.

    Article  Google Scholar 

  4. P. Wang, T. Wu, Y.T. Xiao, J. Pu, X.Y. Guo, J. Huang, and C.L. Xiang, Effect of Al2O3 Micro-Powder Additives on the Properties of Micro-arc Oxidation Coatings Formed on 6061 Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3972–3976.

    Article  CAS  Google Scholar 

  5. Z. Cheng, W. Yang, D. Xu, S. Wu, X. Yao, Y. Lv, and J. Chen, Improvement of High Temperature Oxidation Resistance of Micro Arc Oxidation Coated AlTiNbMo0.5Ta0.5Zr High Entropy Alloy, Mater. Lett., 2020, 262, p 127192.

    Article  CAS  Google Scholar 

  6. X. Shi, W. Yang, Z. Cheng, W. Shao, D. Xu, Y. Zhang, and J. Chen, Influence of Micro Arc Oxidation on High Temperature Oxidation Resistance of AlTiCrVZr Refractory High Entropy Alloy, Int. J. Refract. Met. Hard Mater., 2021, 98, p 105562.

    Article  CAS  Google Scholar 

  7. R. Bahador, N. Hosseinabadi, and A. Yaghtin, Effect of Power Duty Cycle on Plasma Electrolytic Oxidation of A356-Nb2O5 Metal Matrix Composites, J. Mater. Eng. Perform., 2021, 30(4), p 2586–2604.

    Article  CAS  Google Scholar 

  8. X. Bai, X.J. Xu, Y.G. Liu, B. Cao, C.X. Hu, and F.H. Chen, High Temperature Oxidation Resistance of TB8 Titanium Alloy After Equal Channel Angular Pressing and Heat Treatment, J. Mater. Eng. Perform., 2022, 31(5), p 4108–4118.

    Article  CAS  Google Scholar 

  9. Y. Ge, Y. Wang, J. Chen, Y. Zou, L. Guo, J. Ouyang, D. Jia, and Y. Zhou, Hot Corrosion Behavior of NbSi2/SiO2-Nb2O5 Multilayer Coating on Nb Alloy, J. Alloys Compd., 2018, 767, p 7–15.

    Article  CAS  Google Scholar 

  10. J.A. Moreto, R.V. Gelamo, J.P.L. Nascimento, M. Taryba, and J.C.S. Fernandes, Improving the Corrosion Protection of 2524-T3-Al Alloy through Reactive Sputtering Nb2O5 Coatings, Appl. Surf. Sci., 2021, 556, p 149750.

    Article  CAS  Google Scholar 

  11. H.C. Fals, L.A. Lourençato, M.S. Orozco, M.J.X. Belém, and C.R.C. Lima, Slurry Erosion Resistance of Thermally Sprayed Nb2O5 and Nb2O5+WC12Co Composite Coatings Deposited on AISI 1020 Carbon Steel, Ceram. Int., 2020, 46(17), p 27670–27678.

    Article  CAS  Google Scholar 

  12. T. Yang, Z. Yang, X. Cheng, Y. Ding, Y. Fan, G. Liu, K. Zhang, S. Jin, X. Liu, and Z. Qiao, Three-Dimensional Hierarchical Urchin-Like Nb2O5 Microspheres Wrapped with N-Doped Carbon: An Advanced Anode for Lithium-Ion Batteries, J. Alloy. Compd., 2021, 876, p 160145.

    Article  CAS  Google Scholar 

  13. H. Shahbaznejad and H. Ebrahimifar, A Study on the Oxidation and Electrical Behavior of Crofer 22 APU Solid Oxide Fuel Cell Interconnects with Ni-Co-CeO2 Composite Coating, J. Mater. Sci.-Mater. Electron., 2021, 32(6), p 7550–7566.

    Article  CAS  Google Scholar 

  14. K.M. Doleker, The Examination of Microstructure and Thermal Oxidation Behavior of Laser-Remelted High-Velocity Oxygen Liquid Fuel Fe/Al Coating, J. Mater. Eng. Perform., 2020, 29(5), p 3220–3232.

    Article  CAS  Google Scholar 

  15. K. Przybylski, T. Brylewski, E. Durda, R. Gawel, and A. Kruk, Oxidation Properties of the Crofer 22 APU Steel Coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC Interconnect Applications, J. Therm. Anal. Calorim., 2014, 116(2), p 825–834.

    Article  CAS  Google Scholar 

  16. K. Babaei, A. Fattah-alhosseini, and R. Chaharmahali, A Review on Plasma Electrolytic Oxidation (PEO) of Niobium: Mechanism, Properties and Applications, Surf. Interfaces, 2020, 21, p 100719.

    Article  CAS  Google Scholar 

  17. K. Yousefipour, A. Akbari, and M.R. Bayati, The Effect of EEMAO Processing on Surface Mechanical Properties of the TiO2–ZrO2 Nanostructured Composite Coatings, Ceram. Int., 2013, 39(7), p 7809–7815.

    Article  CAS  Google Scholar 

  18. Y.P. Guo, S.C. Di, P.X. Lu, and S.F. Sun, Effects of CeO2 on Microstructure and Properties of Micro Arc Oxidation Coatings on 2A12 Aluminum Alloy, Rare Met. Mater. Eng., 2015, 44(9), p 2240–2244.

    CAS  Google Scholar 

  19. J. Wang, Y. Pan, R. Feng, H. Cui, B. Gong, L. Zhang, Z. Gao, X. Cui, H. Zhang, and Z. Jia, Effect of Electrolyte Composition on the Microstructure and Bio-Corrosion Behavior of Micro-Arc Oxidized Coatings on Biomedical Ti6Al4V Alloy, J. Market. Res., 2020, 9(2), p 1477–1490.

    CAS  Google Scholar 

  20. R. Wang, T. Zhou, J. Liu, X. Zhang, F. Long, and L. Liu, Bilayer Microstructure of Antibacterial TiO2 Coating on Ti6Al4V Fabricated via Micro-Arc Oxidation in W-Containing Electrolytes, Surf. Coat. Technol., 2021, 413, p 127094.

    Article  CAS  Google Scholar 

  21. M. Shokouhfar and S.R. Allahkaram, Effect of Incorporation of Nanoparticles with Different Composition on Wear and Corrosion Behavior of Ceramic Coatings Developed on Pure Titanium by Micro Arc Oxidation, Surf. Coat. Technol., 2017, 309, p 767–778.

    Article  CAS  Google Scholar 

  22. Z.-Q. Liu, R.-X. Ma, G.-J. Xu, W.-B. Wang, and Y.-H. Su, Effects of Annealing on Microstructure and Mechanical Properties of γ-TiAl Alloy Fabricated Via Laser Melting Deposition, Trans. Nonferrous Met. Soc. China, 2020, 30(4), p 917–927.

    Article  CAS  Google Scholar 

  23. E. Nikoomanzari, A. Fattah-alhosseini, M.R. Pajohi Alamoti, and M.K. Keshavarz, Effect of ZrO2 Nanoparticles Addition to PEO Coatings on Ti–6Al–4V Substrate: Microstructural Analysis, Corrosion Behavior and Antibacterial Effect of Coatings in Hanks' Physiological Solution, Ceram. Int., 2020, 46(9), p 13114–13124.

    Article  CAS  Google Scholar 

  24. H.F. Khazaal, I.S. Hburi, and M.S. Farhan, The Impact of Ion-Beam Parameters on the Characteristics of Nb2O5 Thin Films, Surf. Interfaces, 2020, 20, p 100593.

    Article  CAS  Google Scholar 

  25. G. Taques Tractz, F.S. da Luz, S. Regina Masetto Antunes, E. do Prado Banczek, M.T. da Cunha, and P. Rogério Pinto Rodrigues, Nb2O5 Synthesis and Characterization by Pechini Method to the Application as Electron Transport Material in a Solar Device, Solar Energy, 2021, 216, p 1–6.

    Article  CAS  Google Scholar 

  26. N.C. Emeka, P.E. Imoisili, and T.-C. Jen, Preparation and Characterization of NbxOy Thin Films: A Review, Coatings, 2020, 10(12), p 1246.

    Article  CAS  Google Scholar 

  27. S. Damyanova, L. Dimitrov, L. Petrov, and P. Grange, Effect of Niobium on the Surface Properties of Nb2O5-SiO2-Supported Mo Catalysts, Appl. Surf. Sci., 2003, 214(1–4), p 68–74.

    Article  CAS  Google Scholar 

  28. J.P. Nogier, N. Jammul, and M. Delamar, XPS Study of TiO2-V2O5 Catalysts, J. Electron Spectrosc. Relat. Phenom., 1991, 56(4), p 279–295.

    Article  CAS  Google Scholar 

  29. B. Kościelska and A. Winiarski, Structural Investigations of Nitrided Nb2O5 and Nb2O5–SiO2 Sol–Gel Derived Films, J. Non-Cryst. Solids, 2008, 354(35–39), p 4349–4353.

    Article  Google Scholar 

  30. R. Romero, J.R. Ramos-Barrado, F. Martin, and D. Leinen, Nb2O5 Thin Films Obtained by Chemical Spray Pyrolysis, Surf. Interface Anal., 2004, 36(8), p 888–891.

    Article  CAS  Google Scholar 

  31. S.P. Chenakin, G. Melaet, R. Szukiewicz, and N. Kruse, XPS Study of the Surface Chemical State of a Pd/(SiO2+TiO2) Catalyst After Methane Oxidation and SO2 Treatment, J. Catal., 2014, 312, p 1–11.

    Article  CAS  Google Scholar 

  32. Y. Zhang, K. Zhang, S. Lei, Y. Su, W. Yang, J. Wang, G. Qin, and W. Li, Formation and Oxidation Behavior of TiO2 Modified Al2O3-Nb2O5/NbAl3 Composite Coating Prepared by Two-Step Methods, Surf. Coat. Technol., 2022, 433, p 128081.

    Article  CAS  Google Scholar 

  33. J. Yao, Y. Wang, G. Wu, M. Sun, M. Wang, and Q. Zhang, Growth Characteristics and Properties of Micro-Arc Oxidation Coating on SLM-Produced TC4 Alloy for Biomedical Applications, Appl. Surf. Sci., 2019, 479, p 727–737.

    Article  CAS  Google Scholar 

  34. Y.H. Zhou, P.H. Chen, D.N. Huang, Z.Z. Wu, T. Yang, J.J. Kai, and M. Yan, Micro-Arc Oxidation for Improving High-Temperature Oxidation Resistance of Additively Manufacturing Ti2AlNb, Surf. Coat. Technol., 2022, 445, p 128719.

    Article  CAS  Google Scholar 

  35. M. Fazel, H.R. Salimijazi, M.A. Golozar, and M.R. Garsivaz Jazi, A Comparison of Corrosion, Tribocorrosion and Electrochemical Impedance Properties of Pure Ti and Ti6Al4V Alloy Treated by Micro-Arc Oxidation Process, Appl. Surf. Sci., 2015, 324, p 751–756.

    Article  CAS  Google Scholar 

  36. Q. Khalid Naji, J. Mohammed Salman, and N. Mohammed Dawood, Investigations of Structure and Properties of Layered Bioceramic HA/TiO2 and ZrO2/TiO2 Coatings on Ti-6Al-7Nb Alloy by Micro-Arc Oxidation, Mater. Today Proc., 2022, 61, p 786–793.

    Article  CAS  Google Scholar 

  37. B. Pieraggi, C. Rolland, and R. Bruckel, Morphological Characteristics of Oxide Scales Grown on H11 Steel Oxidised in Dry or Wet Air, Mater. High Temp., 2005, 22(1–2), p 61–68.

    Article  CAS  Google Scholar 

  38. N. Dudareva, L. Zaynullina, S. Kiseleva, and M. Abramova, The Influence of Alloy Microstructure on Corrosion Resistance and Other Properties of Coatings Formed by Microarc Oxidation, Mater. Chem. Phys., 2022, 288, p 126379.

    Article  CAS  Google Scholar 

  39. L.T. Duarte, C. Bolfarini, S.R. Biaggio, R.C. Rocha-Filho, and P.A. Nascente, Growth of Aluminum-Free Porous Oxide Layers on Titanium and its Alloys Ti-6Al-4V and Ti-6Al-7Nb by Micro-Arc Oxidation, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 41, p 343–348.

    Article  CAS  Google Scholar 

  40. F. Muhaffel, M. Baydogan, and H. Cimenoglu, A Study to Enhance the Mechanical Durability of the MAO Coating Fabricated on the 7075 Al Alloy for Wear-Related High Temperature Applications, Surf. Coat. Technol., 2021, 409, p 126843.

    Article  CAS  Google Scholar 

  41. O. Yigit, N. Ozdemir, B. Dikici, and M. Kaseem, Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys Via Plasma Electrolytic Oxidation (PEO), Molecules, 2021, 26(13), p 3903.

    Article  CAS  Google Scholar 

  42. Y. Li, W. Wang, H. Liu, J. Lei, J. Zhang, H. Zhou, and M. Qi, Formation and In Vitro/In Vivo Performance of “Cortex-Like” Micro/Nano-Structured TiO2 Coatings on Titanium by Micro-Arc Oxidation, Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 87, p 90–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Guo.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, D., Chen, J. et al. Microstructure and High-Temperature Oxidation Properties of Nb2O5/TiO2 Composite Coatings Based on Ti6Al4V through Micro-arc Oxidation. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08602-0

Keywords

Navigation