Skip to main content

Advertisement

Log in

Enhanced capacity for lithium–air batteries using LaFe0.5Mn0.5O3–CeO2 composite catalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LaFe0.5Mn0.5O3 and Ce-incorporated LaFe0.5Mn0.5O3 catalysts for Li–air batteries were synthesized by co-precipitation (CP) and micro-emulsion methods with the increasing Ce/(La+Ce) ratios from 0 to 0.5. Ce has a low solubility in LaFe0.5Mn0.5O3 perovskite lattices. Instead of forming single-phase La1−x Ce x Fe0.5Mn0.5O3 perovskite, a multi-phase LaFe0.5Mn0.5O3–CeO2 composite was obtained even for Ce/(La+Ce) = 0.05. Such catalysts were used in the cathode of Li–air batteries and the discharge test showed that LaFe0.5Mn0.5O3–CeO2 composite catalyst can effectively improve the specific capacity with the highest capacity of ~4700 mAh/g for Ce/(La+Ce) = 0.05 (by CP). There is also a 0.05 V increase in discharge voltage compared with the reference cell without catalyst, with the discharge voltage plateau at ~2.75 V. The overall ranking in terms of capacity was Ce/(La+Ce) = 0.05 > Ce/(La+Ce) = 0.1 > Ce/(La+Ce) = 0.5 > Ce/(La+Ce) = 0. The capacity increase for Ce/(La+Ce) = 0.05 and 0.1 samples is attributed to the enhanced oxygen storage/release capability and the increased conductivity with the incorporation of CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29. doi:10.1038/nmat3191

    Article  Google Scholar 

  2. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203. doi:10.1021/jz1005384

    Article  Google Scholar 

  3. Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem Mater 23(15):3421–3428. doi:10.1021/cm2000649

    Article  Google Scholar 

  4. Cheng F, Su Y, Liang J, Tao Z, Chen J (2009) MnO2-Based Nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22(3):898–905. doi:10.1021/cm901698s

    Google Scholar 

  5. Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y (2010) Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc 157(8):B1263–B1268. doi:10.1149/1.3456630

    Article  Google Scholar 

  6. Debart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182. doi:10.1016/j.jpowsour.2007.06.180

    Article  Google Scholar 

  7. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. doi:10.1038/nmat3087

    Article  Google Scholar 

  8. Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305. doi:10.1126/science.1170377

    Article  Google Scholar 

  9. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem Solid State Lett 13(6):A69–A72. doi:10.1149/1.3363047

    Article  Google Scholar 

  10. Lu YC, Gasteiger HA, Shao-Horn Y (2011) Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries. Electrochem Solid State Lett 14(5):A70–A74. doi:10.1149/1.3555071

    Article  Google Scholar 

  11. Lu YC, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J Am Chem Soc 133(47):19048–19051. doi:10.1021/ja208608s

    Article  Google Scholar 

  12. Dathar GKP, Shelton WA, Xu Y (2012) Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium. J Phys Chem Lett 3(7):891–895. doi:10.1021/jz300142y

    Article  Google Scholar 

  13. Yin FX, Takanabe K, Katayama M, Kubota J, Domen K (2010) Improved catalytic performance of nitrided Co–Ti and Fe–Ti catalysts for oxygen reduction as non-noble metal cathodes in acidic media. Electrochem Commun 12(9):1177–1179. doi:10.1016/j.elecom.2010.06.012

    Article  Google Scholar 

  14. Cheng FY, Shen JA, Peng B, Pan YD, Tao ZL, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3(1):79–84. doi:10.1038/nchem.931

    Article  Google Scholar 

  15. Wang L, Zhao X, Lu YH, Xu MW, Zhang DW, Ruoff RS, Stevenson KJ, Goodenough JB (2011) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium–air batteries. J Electrochem Soc 158(12):A1379–A1382. doi:10.1149/2.068112jes

    Article  Google Scholar 

  16. Thapa AK, Shin TH, Ida S, Sumanasekera GU, Sunkara MK, Ishihara T (2012) Gold-palladium nanoparticles supported by mesoporous beta-MnO2 air electrode for rechargeable Li–air battery. J Power Sources 220:211–216. doi:10.1016/j.jpowsour.2012.08.003

    Article  Google Scholar 

  17. Cao Y, Wei ZK, He J, Zang J, Zhang Q, Zheng MS, Dong QF (2012) alpha-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy Environ Sci 5(12):9765–9768. doi:10.1039/c2ee23475k

    Article  Google Scholar 

  18. Yang Y, Shi M, Li YS, Fu ZW (2012) MnO2-graphene composite air electrode for rechargeable Li–air batteries. J Electrochem Soc 159(12):A1917–A1921. doi:10.1149/2.043212jes

    Article  Google Scholar 

  19. Lu J, Qin Y, Du P, Luo XY, Wu TP, Ren Y, Wen JG, Miller DJ, Miller JT, Amine K (2013) Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li–O2 batteries. RSC Adv 3(22):8276–8285. doi:10.1039/c3ra40451j

    Article  Google Scholar 

  20. Kim DS, Park YJ (2013) Ketjen black/Co3O4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent: effective catalyst for air electrodes of Li/air batteries. J Alloys Compd 575:319–325. doi:10.1016/j.jallcom.2013.05.178

    Article  Google Scholar 

  21. Yang W, Salim J, Li S, Sun C, Chen L, Goodenough JB, Kim Y (2012) Perovskite Sr0.95Ce0.05CoO3-delta loaded with copper nanoparticles as a bifunctional catalyst for lithium–air batteries. J Mater Chem 22(36):18902–18907. doi:10.1039/c2jm33440b

    Article  Google Scholar 

  22. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries. Angew Chem Int Ed 52(14):3887–3890

    Article  Google Scholar 

  23. Jung KN, Lee JI, Im WB, Yoon S, Shin KH, Lee JW (2012) Promoting Li2O2 oxidation by an La1.7Ca0.3Ni0.75Cu0.25O4 layered perovskite in lithium–oxygen batteries. Chem Commun 48(75):9406–9408. doi:10.1039/c2cc35302d

    Article  Google Scholar 

  24. Wang LX, Ara M, Wadumesthrige K, Salley S, Ng KYS (2013) Graphene nanosheet supported bifunctional catalyst for high cycle life Li–air batteries. J Power Sources 234:8–15. doi:10.1016/j.jpowsour.2013.01.037

    Article  Google Scholar 

  25. Zhao Y, Xu L, Mai L, Han C, An Q, Xu X, Liu X, Zhang Q (2012) Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li–air batteries. Proc Natl Acad Sci USA 109(48):19569–19574. doi:10.1073/pnas.1210315109

    Article  Google Scholar 

  26. Tulloch J, Donne SW (2009) Activity of perovskite La1−x Sr x MnO3 catalysts towards oxygen reduction in alkaline electrolytes. J Power Sources 188(2):359–366. doi:10.1016/j.jpowsour.2008.12.024

    Article  Google Scholar 

  27. Yuasa M, Shimanoe K, Teraoka Y, Yamazoe N (2011) High-performance oxygen reduction catalyst using carbon-supported La-Mn-based perovskite-type oxide. Electrochem Solid St 14(5):A67–A69. doi:10.1149/1.3561762

    Article  Google Scholar 

  28. Yuasa M, Yamazoe N, Shimanoe K (2011) Durability of carbon-supported La-Mn-based perovskite-type oxides as oxygen reduction catalysts in strong alkaline solution. J Electrochem Soc 158(4):A411–A416. doi:10.1149/1.3551499

    Article  Google Scholar 

  29. Nitadori T, Misono M (1985) Catalytic properties of La1−x A′ x FeO3 (A′ = Sr, Ce) and La1−x Ce x CoO3. J Catal 93(2):459–466. doi:10.1016/0021-9517(85)90193-9

    Article  Google Scholar 

  30. Nakamura T, Misono M, Yoneda Y (1983) Reduction-oxidation and catalytic properties of La1−x Sr x CoO3. J Catal 83(1):151–159. doi:10.1016/0021-9517(83)90038-6

    Article  Google Scholar 

  31. Kirchnerova J, Alifanti M, Delmon B (2002) Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion. Appl Catal A 231(1–2):65–80. doi:10.1016/S0926-860X(01)00903-6

    Article  Google Scholar 

  32. Nitadori T, Kurihara S, Misono M (1986) Catalytic properties of La1−x A′ x MnO3 (A′ = Sr, Ce, Hf). J Catal 98(1):221–228. doi:10.1016/0021-9517(86)90310-6

    Article  Google Scholar 

  33. Khan S, Oldman RJ, Catlow CRA, French SA, Axon SA (2008) Computational modeling study of the solubility of cerium at LaCoO3 perovskite surfaces. J Phys Chem C 112(32):12310–12320. doi:10.1021/jp709638h

    Article  Google Scholar 

  34. Wei QT, Guo RS, Wang FH, Li HL (2005) Structure and electrical properties of SrCoO3-delta doped by CeO2. J Mater Sci 40(5):1317–1319. doi:10.1007/s10853-005-6961-x

    Article  Google Scholar 

  35. Maignan A, Raveau B, Hebert S, Pralong V, Caignaert V, Pelloquin D (2006) Re-entrant metallicity and magnetoresistance induced by Ce for Sr substitution in SrCoO3-delta. J Phys 18(17):4305–4314. doi:10.1088/0953-8984/18/17/017

    Google Scholar 

  36. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166. doi:10.1021/jz200352v

    Article  Google Scholar 

  37. Lin X, Zhou L, Huang T, Yu A (2012) Cerium oxides as oxygen reduction catalysts for lithium–air batteries. Int J Electrochem Sci 7(10):9550–9559

    Google Scholar 

  38. Ou YN, Li GR, Liang JH, Peng ZP, Tong YX (2010) Ce1−x Co x O2-delta nanorods grown by electrochemical deposition and their magnetic properties. J Phys Chem C 114(32):13509–13514. doi:10.1021/jp1038128

    Article  Google Scholar 

  39. Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A reversible and higher-rate Li–O2 battery. Science 337(6094):563–566. doi:10.1126/science.1223985

    Article  Google Scholar 

  40. Beattie SD, Manolescu DM, Blair SL (2009) High-capacity lithium–air cathodes. J Electrochem Soc 156(1):A44–A47. doi:10.1149/1.3005989

    Article  Google Scholar 

  41. Krishnamoorthy C, Sethupathi K, Sankaranarayanan V, Nirmala R, Malik SK (2007) Magnetic and magnetotransport properties of Ce doped nanocrystalline LaMnO3. J Alloys Compd 438(1–2):1–7. doi:10.1016/j.jallcom.2006.07.089

    Article  Google Scholar 

  42. Krishnamoorthy C, Sethupathi K, Sankaranarayanan V (2007) Synthesis of single phase Ce doped nanocrystalline LaMnO3. Mater Lett 61(14–15):3254–3257. doi:10.1016/j.matlet.2006.11.049

    Article  Google Scholar 

  43. Liu LM, Sun KN, Li XK, Zhang M, Liu YB, Zhang NQ, Zhou XL (2012) A novel doped CeO2–LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells. Int J Hydrogen Energy 37(17):12574–12579. doi:10.1016/j.ijhydene.2012.06.064

    Article  Google Scholar 

  44. Das S, Poddar A, Roy B, Giri S (2004) Studies of transport and magnetic properties of Ce-doped LaMnO3. J Alloys Compd 365(1–2):94–101. doi:10.1016/S0925-8388(03)00688-1

    Article  Google Scholar 

  45. Das S, Mandal P (1997) Giant magnetoresistance in Ce-doped manganite systems. Z Phys B 104(1):7–9. doi:10.1007/s002570050413

    Article  Google Scholar 

  46. Mandal P, Das S (1997) Transport properties of Ce-doped RMnO3 (R = La, Pr, and Nd) manganites. Phys Rev B 56(23):15073–15080. doi:10.1103/PhysRevB.56.15073

    Article  Google Scholar 

  47. Ganguly R, Gopalakrishnan IK, Yakhmi JV (2000) Does the LaMnO3 phase accept Ce-doping? J Phys 12(47):L719–L722. doi:10.1088/0953-8984/12/47/103

    Google Scholar 

  48. Yanagida T, Kanki T, Vilquin B, Tanaka H, Kawai T (2005) Transport and magnetic properties of La0.9Ce0.1MnO3 thin films. J Appl Phys 97(3):033905. doi:10.1063/1.1844621

    Article  Google Scholar 

  49. Yanagida T, Kanki T, Vilquin B, Tanaka H, Kawai T (2005) Transport and magnetic properties of Ce-doped LaMnO3 thin films. Appl Surf Sci 244(1–4):355–358. doi:10.1016/j.apsusc.2004.09.145

    Article  Google Scholar 

  50. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  51. Lombardo EA, Ulla MA (1998) Perovskite oxides in catalysis: past, present and future. Res Chem Intermed 24(5):581–592. doi:10.1163/156856798X00104

    Article  Google Scholar 

  52. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134(2):1093–1103. doi:10.1021/ja208944x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Zhi Mei for his assistance on SEM and TEM characterizations. This research was financially supported by Department of Energy (Grant DEFG36-05GO85005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Simon Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, T., Ara, M., Wang, L. et al. Enhanced capacity for lithium–air batteries using LaFe0.5Mn0.5O3–CeO2 composite catalyst. J Mater Sci 49, 4058–4066 (2014). https://doi.org/10.1007/s10853-014-8070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8070-1

Keywords

Navigation