Skip to main content

Advertisement

Log in

Boosting the electrochemical performances of LiNi1/3Co1/3Mn1/3O2 cathodes via optimizing calcination temperature for lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The research of high-performance cathode materials for rechargeable lithium-ion batteries (LIBs) is highly desirable. The ternary layered oxide LiNi1/3Co1/3Mn1/3O2 (LNCM) is a promising cathode material for LIBs due to its high discharge voltage, large specific capacity, good thermostability, and low cost. However, the LNCM cathode still has certain limitations, including cationic mixing and low electronic conductivity. These drawbacks ultimately result in poor cycling stability, rapid voltage degradation, and capacity loss during high-rate cycling. To address these issues, we have established a feasible sol-gel method combined with calcination to prepare LNCM, which can significantly improve the electrochemical activity of the LNCM cathode. The developed LNCM−850/10 cathode displays an initial specific discharge capacity of 215.3 mAh g−1 at a current rate of 0.2 C and retains a high reversible capacity of 93.9 mAh g−1 after 200 cycles. In addition, the LNCM−850/10 cathode also exhibits excellent high-rate charge-discharge capability and high-rate cycling performance. These remarkable results are probably due to the low Li+/Ni2+ cation mixing degree, good particle morphology, and uniform particle size distribution of LNCM−850/10, which effectively improves the electronic conductivity and lowers the charge transfer resistance, while reducing the Li+ diffusion distance and accelerating the insertion/extraction of Li+. Our study demonstrates that careful control of the calcination temperature of sol-gel-synthesized LNCM precursors can promote the development of LNCM cathodes suitable for advanced LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Ome AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12:2265–2300. https://doi.org/10.1016/j.rser.2007.05.001

    Article  CAS  Google Scholar 

  2. Talaat M, Farahat MA, Elkholy MH (2019) Renewable power integration: experimental and simulation study to investigate the ability of integrating wave, solar and wind energies. Energy 170:668–682. https://doi.org/10.1016/j.energy.2018.12.171

    Article  Google Scholar 

  3. Zhou T, Xie LL, Niu Y, Xiao HR, Li YJ, Han Q, Qiu XJ, Yang XL, Wu XY, Zhu LM, Pang H, Cao XY (2023) New insights on (V10O28)6--based electrode materials for energy storage: a brief review. Rare Met 42:1431–1445. https://doi.org/10.1007/s12598-022-02207-7

    Article  CAS  Google Scholar 

  4. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Herdrich O, Lambert S, Abbott A, Ryder KS, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86. https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  PubMed  Google Scholar 

  5. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49:1569–1614. https://doi.org/10.1039/c7cs00863e

    Article  CAS  PubMed  Google Scholar 

  6. Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D (2017) Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater 7:1700283. https://doi.org/10.1002/aenm.201700283

    Article  CAS  Google Scholar 

  7. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  8. Zhu LM, Ding GC, Han Q, Miao YX, Li X, Yang XL, Chen L, Wang GK, Xie LL, Cao XY (2022) Enhancing electrochemical performances of small quinone toward lithium and sodium energy storage. Rare Met 41:425–437. https://doi.org/10.1007/s12598-021-01813-1

    Article  CAS  Google Scholar 

  9. Wu ZP, Wang YL, Liu XB, Lv C, Li YS, Wei D, Liu ZF (2019) Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv Mater 31:1800716. https://doi.org/10.1002/adma.201800716

    Article  CAS  Google Scholar 

  10. Zhang W, Wang L, Ding G, Yang Y, Yang G, Xu J, Xu N, Xie L, Han Q, Zhu L, Cao X, Ma J (2023) Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. Chin Chem Lett 34:107328. https://doi.org/10.1016/j.cclet.2022.03.051

    Article  CAS  Google Scholar 

  11. Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J (2019) Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater 31:8582–8612. https://doi.org/10.1021/acs.chemmater.9b03109

    Article  CAS  Google Scholar 

  12. Chen Y, Kang Y, Zhao Y, Wang L, Liu J, Li Y, Liang Z, He X, Li X, Tavajohi N, Li B (2021) A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 59:83–99. https://doi.org/10.1016/j.jechem.2020.10.017

    Article  CAS  Google Scholar 

  13. Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang YM, Yoon WS (2020) Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed 59:2578–2605. https://doi.org/10.1002/anie.201902359

    Article  CAS  Google Scholar 

  14. Biasi LD, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H (2019) Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv Mater 31:1900985. https://doi.org/10.1002/adma.201900985

    Article  CAS  Google Scholar 

  15. Yin S, Deng W, Chen J, Gao X, Zou G, Hou H, Ji X (2021) Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 83:105854. https://doi.org/10.1016/j.nanoen.2021.105854

    Article  CAS  Google Scholar 

  16. Wang L, Wang Z, Xie L, Zhu L, Cao X (2019) ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 18:16619–16628. https://doi.org/10.1021/acsami.9b03365

    Article  CAS  Google Scholar 

  17. Tian C, Lin F, Doeff MM (2018) Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: surface, bulk behavior, and thermal properties. Acc Chem Res 51:89–96. https://doi.org/10.1021/acs.accounts.7b00520

    Article  CAS  PubMed  Google Scholar 

  18. Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947. https://doi.org/10.1038/NMAT3435

    Article  CAS  PubMed  Google Scholar 

  19. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem A 22:3680–3695. https://doi.org/10.1039/c2jm14305d

    Article  CAS  Google Scholar 

  20. Browne MP, Sofer Z, Pumera M (2019) Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ Sci 12:41–58. https://doi.org/10.1039/c8ee02495b

    Article  CAS  Google Scholar 

  21. Tan S, Shadike Z, Li J, Wang X, Yang Y, Lin R, Cresce A, Hu J, Hunt A, Waluyo I (2022) Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat Energy 7:484–494. https://doi.org/10.1038/s41560-022-01020-x

    Article  CAS  Google Scholar 

  22. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54:4440–4457. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  23. Koksbang R, Barker J, Shi H (1996) Cathode materials for lithium rocking chair batteries. Solid State Ion 84:1–21. https://doi.org/10.1016/S0167-2738(96)83001-3

    Article  CAS  Google Scholar 

  24. Lyu Y, Wu X, Wang K, Feng Z, Cheng T, Liu Y, Wang M, Chen R, Xu L, Zhou J, Lu Y, Guo B (2021) An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater 11:2000982. https://doi.org/10.1002/aenm.202000982

    Article  CAS  Google Scholar 

  25. Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H, Honma I (2007) Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J Am Chem Soc 129:7444–7452. https://doi.org/10.1021/ja0681927

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X, Huang X, Chen L, Li H (2019) Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy 4:594–603. https://doi.org/10.1038/s41560-019-0409-z

    Article  CAS  Google Scholar 

  27. Zhang J, Wang PF, Bai P, Wan H, Liu S, Hou S, Pu X, Xia J, Zhang W, Wang Z, Nan B, Zhang X, Xu J, Wang C (2022) Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv Mater 34:2108353. https://doi.org/10.1002/adma.202108353

    Article  CAS  Google Scholar 

  28. Wang L, Li L, Zhang X (2018) Compound-hierarchical-sphere LiNi0.5Co0.2Mn0.3O2: synthesis, structure, and electrochemical characterization. ACS Appl Mater Interfaces 10:32120–32127. https://doi.org/10.1021/acsami.8b09985

    Article  CAS  PubMed  Google Scholar 

  29. Zheng JM, Yan PF, Estevez L, Wang CM, Zhang JG (2018) Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy 49:538–548. https://doi.org/10.1016/j.nanoen.2018.04.077

    Article  CAS  Google Scholar 

  30. Li W, Asl HY, Xie Q, Manthiram A (2019) Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J Am Chem Soc 141:5097–5101. https://doi.org/10.1021/jacs.8b13798

    Article  CAS  PubMed  Google Scholar 

  31. Chakraborty A, Kunnikuruvan S, Kumar S, Markovsky B, Aurbach D, Dixit M, Majo DT (2020) Review of computational studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chem Mater 32:915–952. https://doi.org/10.1021/acs.chemmater.9b04066

    Article  CAS  Google Scholar 

  32. Zuo TT, Rueß R, Pan R, Walther F, Rohnke M, Hori S, Kanno R, Schröder D, Janek J (2021) A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nat Commun 12:6669. https://doi.org/10.1038/s41467-021-26895-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J (2021) Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion. Adv Energy Mater 11:2003400. https://doi.org/10.1002/aenm.202003400

    Article  CAS  Google Scholar 

  34. Hua WB, Guo XD, Zheng Z, Wang YJ, Zhong BH, Fang B, Wang JZ, Chou SL, Liu H (2015) Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J Power Sources 275:200–206. https://doi.org/10.1016/j.jpowsour.2014.09.178

    Article  CAS  Google Scholar 

  35. Lee GH, Wu J, Kim D, Cho K, Cho M, Yang W, Kang YM (2020) Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes. Angew Chem Int Ed 59:8681–8688. https://doi.org/10.1002/anie.202001349

    Article  CAS  Google Scholar 

  36. Cao X, Zhao Y, Zhu L, Xie L, Cao X, Xiong S, Wang C (2016) Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method. Int J Electrochem Sci 11:5267–5278. https://doi.org/10.20964/2016.06.93

    Article  CAS  Google Scholar 

  37. Chen Y, Zhao W, Zhang Q, Yang G, Zheng J, Tang W, Xu Q, Lai C, Yang J, Peng C (2020) Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic-inorganic hybrid interphase layer toward durable high rate battery. Adv Funct Mater 30:2000396. https://doi.org/10.1002/adfm.202000396

    Article  CAS  Google Scholar 

  38. Liang C, Jiang L, Ye S, Wang Z, Wei Z, Wang Q, Sun J (2021) Precise in-situ and ex-situ study on thermal behavior of LiNi1/3Co1/3Mn1/3O2/graphite coin cell: from part to the whole cell. J Energy Chem 54:332–341. https://doi.org/10.1016/j.jechem.2020.06.008

    Article  CAS  Google Scholar 

  39. Zhu L, Bao C, Xie L, Yang X, Cao X (2020) Review of synthesis and structural optimization of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries applications. J Alloys Compd 831:154864. https://doi.org/10.1016/j.jallcom.2020.154864

    Article  CAS  Google Scholar 

  40. Luo B, Jiang B, Peng P, Huang J, Chen J, Li M, Chu L, Li Y (2019) Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification. Electrochim Acta 297:398–405. https://doi.org/10.1016/j.electacta.2018.11.202

    Article  CAS  Google Scholar 

  41. Li G, Huang Z, Zuo Z, Zhang Z, Zhou H (2015) Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. J Power Sources 281:69–76. https://doi.org/10.1016/j.jpowsour.2015.01.173

    Article  CAS  Google Scholar 

  42. Lv C, Yang J, Peng Y, Duan X, Ma J, Li Q, Wang T (2019) 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim Acta 297:258–266. https://doi.org/10.1016/j.electacta.2018.11.172

    Article  CAS  Google Scholar 

  43. Cong L, Zhao Q, Wang Z, Zhang Y, Wu X, Zhang J, Wang R, Xie H, Sun L (2016) (PO4)3- polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochim Acta 201:8–19. https://doi.org/10.1016/j.electacta.2016.03.088

    Article  CAS  Google Scholar 

  44. Lei Y, Li Y, Jiang H, Lai C (2019) Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J Mater Sci 54:4202–4211. https://doi.org/10.1007/s10853-018-3126-2

    Article  CAS  Google Scholar 

  45. Wang X, Jiang Q, Zhang Y, Yuan N, Tang J (2020) High efficient and environment friendly plasma-enhanced synthesis of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 with excellent electrochemical performance. Front Chem 8:72. https://doi.org/10.3389/fchem.2020.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu L, Xie L, Bao C, Yan X, Cao X (2020) LiNi1/3Co1/3Mn1/3O2/polypyrrole composites as cathode materials for high-performance lithium-ion batteries. Int J Energy Res 44:298e308. https://doi.org/10.1002/er.4916

    Article  CAS  Google Scholar 

  47. Cheng C, Chen F, Yi H, Lai G (2018) Enhanced electrochemical and safe performances of LiNi1/3Co1/3Mn1/3O2 by nano-CeO2 coating via a novel hydrolysis precipitate reaction route. J Alloys Compd 753:155–161. https://doi.org/10.1016/j.jallcom.2018.04.229

    Article  CAS  Google Scholar 

  48. Jiang Q, Lang P, Li J, Tang J (2018) Improving the elevated-temperature behaviors of LiNi1/3Co1/3Mn1/3O2 by surface modification with Nano-La2O3. J Alloys Compd 742:549–554. https://doi.org/10.1016/j.jallcom.2018.01.354

    Article  CAS  Google Scholar 

  49. Cui Y, Yang C, Zhuang Z, Wang M, Zhuang Q (2018) Synthesis and electrochemical performance of spheroid LiNi1/3Co1/3Mn1/3O2 in the electrolyte modified by ethylene sulfate and methylene methanedisulfonate. J Inorg Organomet P 28:731–737. https://doi.org/10.1007/s10904-017-0722-6

    Article  CAS  Google Scholar 

  50. Fang Y, Huang Y, Tong W, Cai Y, Wang X, Guo Y, Jia D, Zong J (2018) Synthesis of hollow peanut-like hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 cathode materials with exceptional cycle performance for lithium-ion batteries by a simple self-template solid-state method. J Alloys Compd 743:707–715. https://doi.org/10.1016/j.jallcom.2018.01.257

    Article  CAS  Google Scholar 

  51. Li J, Yao R, Cao C (2014) LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl Mater Interfaces 6:5075–5082. https://doi.org/10.1021/am500215b

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Zhang W, Shen S, Yan X, Wu R, Wu A, Lastoskie C, Zhang J (2017) Sacrificial template strategy toward a hollow LiNi1/3Co1/3Mn1/3O2 nanosphere cathode for advanced lithium-ion batteries. ACS Omega 2:7593–7599. https://doi.org/10.1021/acsomega.7b00764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou H, Cheng H, Zhao H, Zhao K, Zhao Y, Zhang J, Xu Q, Lu X (2019) Superior stability and dynamic performance of single crystal LiNi1/3Co1/3Mn1/3O2 nanorods from beta-MnO2 template for lithium-ion batteries. J Electrochem Soc 166:A59–A67. https://doi.org/10.1149/2.0281902jes

    Article  CAS  Google Scholar 

  54. Zhu L, Yang G, Liu J, Bao C, Xie L, Cao X (2019) Ethylene glycol-assisted sol-gel method for preparing LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries with excellent electrochemical performance. ChemistrySelect 4:11475–11482. https://doi.org/10.1002/slct.201903231

    Article  CAS  Google Scholar 

  55. Zheng H, Chen X, Yang Y, Li L, Li G, Guo Z, Feng C (2017) Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces 9:39560–39568. https://doi.org/10.1021/acsami.7b10264

    Article  CAS  PubMed  Google Scholar 

  56. Jiang X, Sha Y, Cai R, Shao Z (2015) The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J Mater Chem A 3:10536–10544. https://doi.org/10.1039/C5TA01236H

    Article  CAS  Google Scholar 

  57. Zhang CF, Yang P, Dai X, Xiong X, Zhan J, Zhang YL (2009) Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor. T Nonferr Metal Soc 19:635–641. https://doi.org/10.1016/S1003-6326(08)60325-8

    Article  CAS  Google Scholar 

  58. Fujii Y, Miura H, Suzuki N, Shoji T, Nakayama N (2007) Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2: calcination temperature dependence. J Power Sources 171:894–903. https://doi.org/10.1016/j.jpowsour.2007.06.017

    Article  CAS  Google Scholar 

  59. Zeng J, Hai C, Ren X, Li X, Shen Y, Dong O, Zhang L, Sun Y, Ma L, Zhang X, Dong S, Zhou Y (2018) Facile triethanolamine-assisted combustion synthesized layered LiNi1/3Co1/3Mn1/3O2 cathode materials with enhanced electrochemical performance for lithium-ion batteries. J Alloys Compd 735:1977–1985. https://doi.org/10.1016/j.jallcom.2017.11.321

    Article  CAS  Google Scholar 

  60. Fan G, Liu Z, Feng L, Feng L, Yang W, Liu B (2018) Understanding capacity fade of LiNi1/3Co1/3Mn1/3O2 from microstructure in full lithium ion battery. J Electrochem Soc 165:A1943–A1949. https://doi.org/10.1149/2.1501809jes

    Article  CAS  Google Scholar 

  61. Xu F, Yan H, Chen J, Zhang Z, Fan C (2018) Improving electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by enhancing thermal decomposition of carbonates to synthesize ultrafine powders. J Electroanal Chem 820:118–122. https://doi.org/10.1016/j.jelechem.2018.04.069

    Article  CAS  Google Scholar 

  62. Li Y, Hou X, Zhou Y, Han W, Liang C, Wu X, Wang S, Ru Q (2018) Electrochemical performance of structure-dependent LiNi1/3Co1/3Mn1/3O2 in aqueous rechargeable lithium-ion batteries. Energy Technol 6:391–396. https://doi.org/10.1002/ente.201700528

    Article  CAS  Google Scholar 

  63. Li F, Kong L, Sun Y, Jin Y, Hou P (2018) Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries. J Mater Chem A 6:12344–12352. https://doi.org/10.1039/c8ta03363c

    Article  CAS  Google Scholar 

  64. Hou Q, Cao G, Wang P, Zhao D, Cui X, Li S, Li C (2018) Carbon coating nanostructured-LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries. J Alloys Compd 747:796–802. https://doi.org/10.1016/j.jallcom.2018.03.115

    Article  CAS  Google Scholar 

  65. Wang H, Wei Y, Wang J, Long D (2018) Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochim Acta 269:724–732. https://doi.org/10.1016/j.electacta.2018.03.029

    Article  CAS  Google Scholar 

  66. He L, Sun S, Yu J (2018) Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method. Ceram Int 44:351–357. https://doi.org/10.1016/j.ceramint.2017.09.180

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Henan, China (No. 222300420138), for the project entitled “Design, synthesis, and oxygen production performance of cobalt-titanium encapsulated polyoxotungstates with photocatalytic function orientation” and by the Ph.D. Programs Foundation of Henan University of Technology (No. 2021BS0027) for the project entitled “Polyoxometalate-based functional materials and their applications in the field of energy storage.”

Author information

Authors and Affiliations

Authors

Contributions

Qing Han: conceptualization, software, writing—original draft, funding acquisition. Chenguang Bao: methodology, investigation. Yongmei Xiao: data curation, validation. Xuejing Qiu: data curation, validation. Xinli Yang: resources, methodology, writing—review and editing, supervision.

Corresponding authors

Correspondence to Qing Han or Xinli Yang.

Ethics declarations

Ethical approval

This paper is not applicable for both human and/or animal studies. This declaration is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Bao, C., Xiao, Y. et al. Boosting the electrochemical performances of LiNi1/3Co1/3Mn1/3O2 cathodes via optimizing calcination temperature for lithium-ion batteries. Ionics 29, 4483–4493 (2023). https://doi.org/10.1007/s11581-023-05173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05173-x

Keywords

Navigation