Skip to main content
Log in

Microstructure, corrosion, and mechanical properties of compression-molded zinc-nanodiamond composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc-nanodiamond (ND) composite is proposed as a novel biodegradable implant material due to its desirable corrosion, mechanical, and biocompatible properties. In this research, the microstructure, corrosion behavior, and mechanical properties of Zn-ND composites were investigated for the first time as a potential implant material in biomedical applications. Powder metallurgy manufacturing processes were used and different sintering conditions were studied. Grain size increased with increasing sintering temperature and longer sintering time. Corrosion resistance was improved 61.0, 65.9, and 70.7 % for 1, 2.5, and 5 % ND compared with pure Zn. Compression and hardness tests were performed to determine the mechanical properties. In the compression tests, Zn-1ND showed the highest Young’s modulus, with 10.95 and 27.32 % more than pure Zn and Zn-5ND. Pure Zn had the highest compressive strength, 11.8 and 29.5 % higher than Zn-1ND and Zn-2.5ND. Zn-1ND and Zn-2.5ND are 55.2 and 68.9 % lower in hardness compared with pure Zn (HV = 27). Compression-molded zinc with low concentrations of nanodiamond offers a promising combination of strength and low corrosion rate, and with strength approaching cortical bone and higher than most biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Zhang G, Wei M (2009) Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B Appl Biomater 89B(2):408–414

    Article  Google Scholar 

  2. Witte F et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563

    Article  Google Scholar 

  3. Vojtěch D et al (2011) Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 7(9):3515–3522

    Article  Google Scholar 

  4. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411

    Article  Google Scholar 

  5. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27(2–3):291–311

    Article  Google Scholar 

  6. Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56:S20–S23

    Article  Google Scholar 

  7. Samman S (2007) Zinc. Nutr Diet 64:S131–S134

    Article  Google Scholar 

  8. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227

    Google Scholar 

  9. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25(18):2577–2582

    Article  Google Scholar 

  10. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  Google Scholar 

  11. Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1(1):57–65

    Article  Google Scholar 

  12. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127(16):6021–6026

    Article  Google Scholar 

  13. Kam NWS et al (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605

    Article  Google Scholar 

  14. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34(1–2):18–74

    Article  Google Scholar 

  15. Schrand AM et al (2006) Are diamond nanoparticles cytotoxic? J Phys Chem B 111(1):2–7

    Article  Google Scholar 

  16. Liu K-K et al (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:32

    Google Scholar 

  17. Yuan Y et al (2010) Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater 19(4):291–299

    Article  Google Scholar 

  18. Dewidar M, Yoon H-C, Lim J (2006) Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met Mater Int 12(3):193–206

    Article  Google Scholar 

  19. Clark GCF, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16(2):125–134

    Article  Google Scholar 

  20. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49(4):1696–1701

    Article  Google Scholar 

  21. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  22. Cai S et al (2012) Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C 32(8):2570–2577

    Article  Google Scholar 

  23. Wang W et al (2002) Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J Eur Ceram Soc 22(7):1045–1049

    Article  Google Scholar 

  24. Yan G et al (1999) The effect of density on the corrosion of NdFeB magnets. J Alloy Compd 292(1–2):266–274

    Article  Google Scholar 

  25. Roy TK et al (2008) Sintering studies of nano-crystalline zinc oxide. Ceram Int 34(1):81–87

    Article  Google Scholar 

  26. Subramaniyan A et al (2011) Sintering studies on 20 mol% yttrium-doped barium cerate. J Am Ceram Soc 94(6):1800–1804

    Article  Google Scholar 

  27. Panigrahi BB, Godkhindi MM (2006) Dilatometric sintering study of Ti–50Ni elemental powders. Intermetallics 14(2):130–135

    Article  Google Scholar 

  28. Fang Z et al (2005) An experimental study of the sintering of nanocrystalline WC–Co powders. Int J Refract Metal Hard Mater 23(4–6):249–257

    Article  Google Scholar 

  29. Fedorchenko IM (2009) Shrinkage of metal ceramic briquettes during sintering. Powder Metall Met Ceram 48(9–10):497–507

    Article  Google Scholar 

  30. Ji CH et al (2001) Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: final density. Mater Sci Eng A 311(1–2):74–82

    Article  Google Scholar 

  31. Sukhanov MV, Pet’kov VI, Firsov DV (2011) Sintering mechanism for high-density NZP ceramics. Inorg Mater 47(6):674–678

    Article  Google Scholar 

  32. Abdoli H et al (2010) Processing and surface properties of Al–AlN composites produced from nanostructured milled powders. J Alloy Compd 490(1–2):624–630

    Article  Google Scholar 

  33. Torres CDS, Schaeffer L (2010) Effect of high energy milling on the microstruture and properties of WC–Ni composite. Mater Res 13:293–298

    Article  Google Scholar 

  34. Hewitt SA, Kibble KA (2009) Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites. Int J Refract Metal Hard Mater 27(6):937–948

    Article  Google Scholar 

  35. Sohn HY, Moreland C (1968) The effect of particle size distribution on packing density. Can J Chem Eng 46(3):162–167

    Article  Google Scholar 

  36. Zhang T et al (2002) Sintering study on commercial CeO2 powder with small amount of MnO2 doping. Mater Lett 57(2):507–512

    Article  Google Scholar 

  37. Yan J et al (2007) High-pressure sintering study of a novel hard material (W0.5Al0.5)C0.5 without binder metal. Int J Refract Metal Hard Mater 25(1):62–66

    Article  Google Scholar 

  38. Stawarczyk B et al (2013) The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Invest 17(1):269–274

    Article  Google Scholar 

  39. Zhang XG (1996) Corrosion and electrochemistry of zinc. Plenum, New York

    Book  Google Scholar 

  40. Cachet C et al (2002) Relationship between zinc corrosion process and corrosion products: an EIS and Raman spectroscopy study. Electrochim Acta 47:3409–3413

    Article  Google Scholar 

  41. Miao W et al (2007) Pitting corrosion of Zn and Zn–Al coated steels in pH 2 to 12 NaCl solutions. J Electrochem Soc 154(1):C7–C15

    Article  Google Scholar 

  42. Hahn H, Logas J, Averback RS (1990) Sintering characteristics of nanocrystalline TiO2. J Mater Res 5(03):609–614

    Article  Google Scholar 

  43. Jacobs JJ, Gilbert JL, Urban RM (1998) Current concepts review—corrosion of metal orthopaedic implants*. J Bone Joint Surg 80(2):268–282

    Google Scholar 

  44. Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198

    Article  Google Scholar 

  45. Kubásek J, Vojtěch D (2012) Zn-based alloys as an alternative biodegradable materials. Metal 5:23–25

    Google Scholar 

  46. Gu X et al (2010) Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31(6):1093–1103

    Article  Google Scholar 

  47. Schrand AM et al (2007) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater 16(12):2118–2123

    Article  Google Scholar 

  48. Sun J, Xie G (2011) Tissue distribution of intravenously administrated hydroxyapatite nanoparticles labeled with < sup > 125 </sup > I. J Nanosci Nanotechnol 11(12):10996–11000

    Article  Google Scholar 

  49. Ruedi TP, Murphy WM, Principles AO (2001) Principles of fracture management. Thieme Medical, New York

    Google Scholar 

  50. Xu L et al (2007) In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res Part A 83A(3):703–711

    Article  Google Scholar 

  51. Zhang S et al (2010) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 6(2):626–640

    Article  Google Scholar 

  52. Zhang E et al (2008) Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Mater Sci Eng A 488(1–2):102–111

    Article  Google Scholar 

  53. Chang J-W et al (2011) Influence of Nd and Y additions on the corrosion behaviour of extruded Mg–Zn–Zr alloys. Int J Miner Metall Mater 18(2):203–209

    Article  Google Scholar 

  54. Gu X-N, Zheng Y-F (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115

    Article  Google Scholar 

  55. Zhang BP, Wang Y, Geng L (2011) Research on Mg–Zn–Ca alloy as degradable biomaterial. In: Pignatello R (ed) Biomaterials—Physics and chemistry. InTech, pp 183–204

  56. Hansen N (2004) Hall–Petch relation and boundary strengthening. Scripta Mater 51(8):801–806

    Article  Google Scholar 

  57. Razavi M, Fathi MH, Meratian M (2010) Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91–FA nanocomposites for biomedical applications. Mater Sci Eng A 527(26):6938–6944

    Article  Google Scholar 

  58. Zadražil T, Vodák F, Kapičková O (2004) Effect of temperature and age of concrete on strength–porosity relation. Acta Polytech 44:1

    Google Scholar 

  59. Mahfuz H et al (2007) Reinforcement of nylon-6 filaments with SiO2 nanoparticles and comparison of Young’s modulus with theoretical bounds. Macromol Mater Eng 292(4):437–444

    Article  Google Scholar 

  60. Vijh A (1975) The influence of metal–metal bond energies on the adhesion, hardness, friction and wear of metals. J Mater Sci 10(6):998–1004. doi:10.1007/bf00856987

    Article  Google Scholar 

  61. Yanson KA et al (1973) Hardness of the human tibia. Polym Mech 9(6):966–971

    Article  Google Scholar 

  62. Porter FC (1991) Zinc handbook: properties, processing, and use in design. Mechanical engineering. Marcel Dekker, New York

    Google Scholar 

  63. Cheng J et al (2013) Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J Mater Sci Technol 29(7):619–627

    Article  Google Scholar 

  64. Brar HS, Wong J, Manuel MV (2012) Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 7:87–95

    Article  Google Scholar 

  65. Hänzi AC, Sologubenko AS, Uggowitzer PJ (2009) Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications. Int J Mater Res 8:1127–1136

    Article  Google Scholar 

  66. Hung F-Y et al (2007) Vibration behavior of light metals: Al–Zn alloy and Mg–Al–Zn alloy. J Mater Sci 42(13):5020–5028. doi:10.1007/s10853-006-0595-5

    Article  Google Scholar 

  67. He S-Y et al (2011) Microstructure and properties of biodegradable β-TCP reinforced Mg–Zn–Zr composites. Trans Nonferr Met Soc China 21(4):814–819

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express the sincere appreciation to Dr. Haifeng (Frank) Ji and Dr. Richard Chiou at Drexel University for providing experimental facilities, assistance, and thoughtful scientific discussions in this Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., George, C., Cao, Y. et al. Microstructure, corrosion, and mechanical properties of compression-molded zinc-nanodiamond composites. J Mater Sci 49, 3629–3641 (2014). https://doi.org/10.1007/s10853-014-8066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8066-x

Keywords

Navigation