Skip to main content

Advertisement

Log in

Effects of Cu Content on the Mechanical, Degradable, and Antibacterial Properties of the As-Cast Zn-3Al-xCu Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Degradable zinc alloys are a new type of medical material that has great potentials to be used in bone implants. In this work, a series of degradable Zn-3Al-xCu (x = 0, 0.5, 1.0, and 1.5 wt.%) alloys were designed, and the effects of copper content on the mechanical, degradable and antibacterial properties were systematically investigated. These include microstructural observation, tensile, electrochemical, immersion, and antibacterial tests. The results showed that Cu addition contributed to the grain refinement effect, and the grain size of Zn-3Al-1.5Cu alloy could reach a minimum of 5 μm. A tensile test showed that Cu addition improved the mechanical properties of the Zn-3Al-Cu alloys with ultimate tensile strength (UTS) reaching up to 209.30 ± 1.91 MPa and elongation up to 9.11 ± 0.48%. The in vitro immersion examination showed that the degradation rate of the Zn-3Al-xCu alloys accelerated with increasing Cu content, and the fastest corrosion rate of 0.025 ± 0.0005 mm/y was achieved for the Zn-3Al-1.5Cu alloy. Moreover, the antibacterial tests also displayed that the Zn-3Al-xCu alloys exhibited a significant antibacterial effect against S. aureus, and their inhibition zone diameters improved from 0.2 ± 0.1 to 4.9 ± 0.4 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Liu, Y. Li, Q. Ge, Z. Liu, A. Qiao, and Y. Mu, Mechanical Characteristics and In Vitro Degradation of Biodegradable Zn-Al alloy, Mater. Lett., 2021 https://doi.org/10.1016/j.matlet.2021.130181

    Article  Google Scholar 

  2. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  3. F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6(5), p 1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028

    Article  CAS  Google Scholar 

  4. M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf, A Novel Approach to Temporary Stenting: Degradable Cardiovascular Stents Produced from Corrodible Metal—Results 6-18 Months After Implantation into New Zealand White Rabbits, Heart, 2001, 86(5), p 563–569. https://doi.org/10.1136/heart.86.5.563

    Article  CAS  Google Scholar 

  5. C.J. Frederickson, J.Y. Koh, and A.I. Bush, The Neurobiology of Zinc in Health and Disease, Nat. Rev. Neurosci., 2005, 6(6), p 449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  Google Scholar 

  6. J. Cheng, B. Liu, Y.H. Wu, and Y.F. Zheng, Comparative In Vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals, J. Mater. Sci. Technol., 2013, 29(7), p 619–627. https://doi.org/10.1016/j.jmst.2013.03.019

    Article  CAS  Google Scholar 

  7. H. Li, L. Xin, K. Zhang, X. Yin, and S. Yu, Fluorine-Free Fabrication of Robust Self-Cleaning and Anti-corrosion Superhydrophobic Coating with Photocatalytic Function for Enhanced Anti-biofouling Property, Surf. Coat. Tech., 2022 https://doi.org/10.1016/j.surfcoat.2022.128406

    Article  Google Scholar 

  8. J. Venezuela and M.S. Dargusch, The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review, Acta Biomater., 2019, 87, p 1–40. https://doi.org/10.1016/j.actbio.2019.01.035

    Article  CAS  Google Scholar 

  9. X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng, Micro-alloying with Mn in Zn-Mg Alloy for Future Biodegradable Metals Application, Mater. Design., 2016, 94, p 95–104. https://doi.org/10.1016/j.matdes.2015.12.128

    Article  CAS  Google Scholar 

  10. K. Wang, X. Tong, J. Lin, A. Wei, Y. Li, M. Dargusch, and C. Wen, Binary Zn-Ti Alloys for Orthopedic Applications: Corrosion and Degradation Behaviors, Friction and Wear Performance, and Cytotoxicity, J. Mater. Sci. Technol., 2021, 74, p 216–229. https://doi.org/10.1016/j.jmst.2020.10.031

    Article  CAS  Google Scholar 

  11. Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin, and L.N. Wang, Design Biodegradable Zn Alloys: Second Phases and their Significant Influences on Alloy Properties, Bioact. Mater., 2020, 5(2), p 210–218. https://doi.org/10.1016/j.bioactmat.2020.02.010

    Article  Google Scholar 

  12. C. Chen, S. Fan, J. Niu, H. Huang, Z. Jin, L. Kong, D. Zhu, and G. Yuan, Alloying Design Strategy for Biodegradable Zinc Alloys Based on First-Principles Study of Solid Solution Strengthening, Mater. Des., 2021 https://doi.org/10.1016/j.matdes.2021.109676

    Article  Google Scholar 

  13. H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, and Y. Zheng, Alloying Design of Biodegradable Zinc as Promising Bone Implants for Load-Bearing Applications, Nat. Commun., 2020, 11(1), p 401. https://doi.org/10.1038/s41467-019-14153-7

    Article  CAS  Google Scholar 

  14. Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, J. Ou, and G. Yuan, Potential Biodegradable Zn-Cu Binary Alloys Developed for Cardiovascular Implant Applications, J. Mech. Behav. Biomed. Mater., 2017, 72, p 182–191. https://doi.org/10.1016/j.jmbbm.2017.05.013

    Article  CAS  Google Scholar 

  15. J. Huang, Y. Lai, H. Jin, H. Guo, F. Ai, Q. Xing, X. Yang, and D.J. Ross, Preparation and Properties of Zn-Cu Alloy for Potential Stent Material, J. Mater. Eng. Perform., 2020, 29(10), p 6484–6493. https://doi.org/10.1007/s11665-020-05167-0

    Article  CAS  Google Scholar 

  16. G. Li, H. Yang, Y. Zheng, X.H. Chen, J.A. Yang, D. Zhu, L. Ruan, and K. Takashima, Challenges in the Use of Zinc and Its Alloys as Biodegradable Metals: Perspective from Biomechanical compatibility, Acta Biomater., 2019, 97, p 23–45. https://doi.org/10.1016/j.actbio.2019.07.038

    Article  CAS  Google Scholar 

  17. Y.X. Yin, C. Zhou, Y.P. Shi, Z.Z. Shi, T.H. Lu, Y. Hao, C.H. Liu, X. Wang, H.J. Zhang, and L.N. Wang, Hemocompatibility of Biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys, Mater Sci Eng C Mater Biol Appl., 2019, 104, p 109896. https://doi.org/10.1016/j.msec.2019.109896

    Article  CAS  Google Scholar 

  18. P.K. Bowen, J.M. Seitz, and R.J. Guillory, Evaluation of Wrought Zn-Al alloys (1, 3, and 5 wt% Al) Through Mechanical and In Vivo Testing for Stent Applications, J. Biomed. Mater. Res. B, 2018, 106(1), p 245–258. https://doi.org/10.1002/jbm.b.33850

    Article  CAS  Google Scholar 

  19. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498. https://doi.org/10.1016/j.biomaterials.2008.10.021

    Article  CAS  Google Scholar 

  20. C. Wang, H.T. Yang, X. Li, and Y.F. Zheng, In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals, J. Mater. Sci. Technol., 2016, 32(9), p 909–918. https://doi.org/10.1016/j.jmst.2016.06.003

    Article  CAS  Google Scholar 

  21. P.K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater., 2013, 25(18), p 2577–2582. https://doi.org/10.1002/adma.201300226

    Article  CAS  Google Scholar 

  22. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R., 2014, 77, p 1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  23. K. Törne, M. Larsson, A. Norlin, and J. Weissenrieder, Degradation of Zinc in Saline Solutions, Plasma, and Whole Blood, J. Biomed. Mater. Res. B., 2016, 104(6), p 1141–1151.

    Article  Google Scholar 

  24. J. Chen, L. Tan, X. Yu, and K. Yang, Effect of Minor Content of Gd on the Mechanical and Degradable Properties of As-Cast Mg-2Zn-xGd-0.5Zr Alloys, J. Mater. Sci. Technol., 2019, 35(4), p 503–511. https://doi.org/10.1016/j.jmst.2018.10.022

    Article  CAS  Google Scholar 

  25. G. Singh and A. Pandey, Management of Appendix Stump: The Technique, Med. J. Dr. DY Patil Univ., 2012, 5(2), p 106. https://doi.org/10.4103/0975-2870.103328

    Article  Google Scholar 

  26. J. Wang, Z. Shan, X. Tan, X. Li, Z. Jiang, and J. Qin, Preparation of Graphene Oxide (GO)/Lanthanum Coordination Polymers for Enhancement of Bactericidal Activity, J. Mater. Chem. B., 2021, 9(2), p 366–372. https://doi.org/10.1039/d0tb02266g

    Article  CAS  Google Scholar 

  27. W.U. Xiao-ping, L.I. De-fu, G.U. Sheng-li, X.U. Xiao-qing, H.U. Jie, and H.E. Jin-yu, As-Cast Microstructure and Phase Structure of ZnAl10Cu2 Alloy, Chin. J. Eng., 2011, 33(10), p 1248–1252. https://doi.org/10.13374/j.issn1001-053x.2011.10.007

    Article  Google Scholar 

  28. S. Gimmler, M. Apel, and A. Bührig-Polaczek, Selection of Dedicated As-Cast Microstructures in Zn-Al-Cu Alloys for Bearing Applications Supported by Phase-Field Simulations, Metals, 2020 https://doi.org/10.3390/met10121659

    Article  Google Scholar 

  29. H. J. Wang, N. C. Si, G. L. Liu, Z. J. Wang, and R. Ding, Effect of Aluminium Element on Microstructures and Mechanical Properties of ZZn-Al-Cu Casting Alloy. Foundry. 2015.

  30. R. Michalik and H. Woźnica, Structure and Corrosion Resistance of Cast ZnAl40Cu2 Alloy, Defect. Diffus. Forum., 2012, 326–328, p 555–560. https://doi.org/10.4028/www.scientific.net/DDF.326-328.555

    Article  CAS  Google Scholar 

  31. Z. Shi, M. Liu, and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52(2), p 579–588. https://doi.org/10.1016/j.corsci.2009.10.016

    Article  CAS  Google Scholar 

  32. T. Huang, Z. Liu, D. Wu, and H. Yu, Microstructure, Mechanical Properties, and Biodegradation Response of the Grain-Refined Zn Alloys for Potential Medical Materials, J. Mater. Res. Technol., 2021, 15, p 226–240. https://doi.org/10.1016/j.jmrt.2021.08.024

    Article  CAS  Google Scholar 

  33. P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory 2nd., F. Zhao, J. Goldman, and J.W. Drelich, Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys, Adv. Healthc. Mater., 2016, 5(10), p 1121–1140. https://doi.org/10.1002/adhm.201501019

    Article  CAS  Google Scholar 

  34. IOF Standardization, Textile Fabrics: Determination of Antibacterial Activity: Agar Difusion Plate Test. ISO: 2004.

  35. H. Okamoto and T. Massalski, Binary Alloy Phase Diagrams, ASM Int. Mater. Park OH USA, 1990 https://doi.org/10.31399/asm.hb.v03.a0006247

    Article  Google Scholar 

  36. D. Ma, Y. Li, S. Ng, and H. Jones, Unidirectional Solidification of Zn-rich Zn-Cu Peritectic Alloys—I. Microstructure Selection, Acta Mater., 2000, 48(2), p 419–431. https://doi.org/10.1016/S1359-6454(99)00365-1

    Article  CAS  Google Scholar 

  37. M.J. Sun, T.J. Chen, H.Y. Guo, and T.Q. Duan Effect of Cu on the Solidification Structure of Zn-27Al Alloy. Spec Cast Nonferrous Alloys (2012)

  38. J. Lin, X. Tong, Q. Sun, Y. Luan, D. Zhang, Z. Shi, K. Wang, J. Lin, Y. Li, M. Dargusch, and C. Wen, Biodegradable Ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) Alloys for Orthopedic Applications, Acta Biomater., 2020, 115, p 432–446. https://doi.org/10.1016/j.actbio.2020.08.033

    Article  CAS  Google Scholar 

  39. T. Freund and S.R. Morrison, Mechanism of Cathodic Processes on the Semiconductor Zinc Oxide, Surf. Sci., 1968, 9(1), p 119–132. https://doi.org/10.1016/0039-6028(68)90167-2

    Article  CAS  Google Scholar 

  40. L. Sukhodub, Antimicrobial Activity of Ag+, Cu2+, Zn2+, Mg2+ Ions Doped Chitosan Nanoparticles, Ann. Mechnikov’s Inst., 2015, 1, p 39–43.

    Google Scholar 

  41. W.L. Du, S.S. Niu, Y.L. Xu, Z.R. Xu, and C.L. Fan, Antibacterial Activity of Chitosan Tripolyphosphate Nanoparticles Loaded with Various Metal Ions, Carbohyd. Polym., 2009, 75(3), p 385–389. https://doi.org/10.1016/j.carbpol.2008.07.039

    Article  CAS  Google Scholar 

  42. S. Lin, Q. Wang, X. Yan, X. Ran, L. Wang, J.G. Zhou, T. Hu, and G. Wang, Mechanical Properties, Degradation Behaviors and Biocompatibility Evaluation of a Biodegradable Zn-Mg-Cu Alloy for Cardiovascular Implants, Mater. Lett., 2019, 234, p 294–297. https://doi.org/10.1016/j.matlet.2018.09.092

    Article  CAS  Google Scholar 

  43. E. Zhang, X. Wang, M. Chen, and B. Hou, Effect of the Existing Form of Cu Element on the Mechanical Properties, Bio-corrosion and Antibacterial Properties of Ti-Cu Alloys For Biomedical Application, Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 69, p 1210–1221. https://doi.org/10.1016/j.msec.2016.08.033

    Article  CAS  Google Scholar 

  44. G. Grass, C. Rensing, and M. Solioz, Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microbiol., 2011, 77(5), p 1541–1547. https://doi.org/10.1128/AEM.02766-10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52001034, 51871030), Changzhou Sci&Tech Program (No. CJ20200078), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB430013), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Huang, X., Yang, Y. et al. Effects of Cu Content on the Mechanical, Degradable, and Antibacterial Properties of the As-Cast Zn-3Al-xCu Alloys. J. of Materi Eng and Perform 32, 10039–10056 (2023). https://doi.org/10.1007/s11665-023-07870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07870-0

Keywords

Navigation