Skip to main content
Log in

Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous Au/TiO2 nanocomposites with different Au particle size (7.3–11.8 nm) were synthesized via deposition–precipitation method. The synthesized nanocomposites have been characterized by XRD, TEM, XPS, DLS, ICP-OES, N2 sorpometry, and UV–Vis spectroscopy. Au/TiO2 showed higher quantum yield and greater photocatalytic efficiency compared to pure TiO2 under both ultraviolet and sunlight illumination. The increase of the photocatalytic efficiency of TiO2 upon deposition with gold nanoparticles, Au NPs, is due to the interface electron transfer from Au nanoparticles to TiO2 under visible light illumination and from TiO2 to Au nanoparticles under UV illumination. For the first time, the effect of Au particle sizes when it is very similar to the interparticles pores of TiO2 has been investigated. The highest reaction rate (5.7 × 10−2 min−1) and degradation efficiency of Safranin-O (SO) dye (97 %) were observed when the deposited gold nanoparticles are the smallest among the studied samples (sAu/TiO2). In spite of blocking a high percentage of the TiO2 pores, the sAu/TiO2 sample demonstrated a complete degradation of SO dye in 50 min which is more efficient than any other reported catalysts in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Scheme 4

Similar content being viewed by others

References

  1. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J Mol Catal A 328:8–26

    Article  CAS  Google Scholar 

  2. El-Kemary M, El-Shamy H (2009) Fluorescence modulation and photodegradation characteristics of safranin O dye in the presence of ZnS nanoparticles. J Photochem Photobiol A 205:151–155

    Article  CAS  Google Scholar 

  3. Wang X, Wan F, Han K, Chai C, Jiang K (2008) Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties. Mater Charact 59:1765–1770

    Article  CAS  Google Scholar 

  4. Park J-Y, Hwang K-J, Lee J-W, Lee I-H (2011) Fabrication and characterization of electrospun Ag doped TiO2 nanofibers for photocatalytic reaction. J Mater Sci 46:7240–7246. doi:10.1007/s10853-011-5683-5

    Article  CAS  ADS  Google Scholar 

  5. Salaices M, Serrano B, de Lasa HI (2004) Photocatalytic conversion of phenolic compounds in slurry reactors. Chem Eng Sci 59:3–15

    Article  CAS  Google Scholar 

  6. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  7. Riassetto D, Holtzinger C, Langlet M (2009) Influence of platinum nano-particles on the photocatalytic activity of sol–gel derived TiO2 films. J Mater Sci 44:2637–2646. doi:10.1007/s10853-009-3345-7

    Article  CAS  ADS  Google Scholar 

  8. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  9. Sobana N, Muruganadham M, Swaminathan M (2006) Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A: Chem 258:124–132

    Article  CAS  Google Scholar 

  10. Pouretedal HR, Norozi A, Keshavarz MH, Semnani A (2009) Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J Hazard Mater 162:674–681

    Article  PubMed  CAS  Google Scholar 

  11. Hamity M, Lema RH, Suchetti CA, Gsponer HE (2008) UV–Vis photodegradation of dyes in the presence of colloidal Q-CdS. J Photochem Photobiol A Chem 200:445–450

    Article  CAS  Google Scholar 

  12. El-Kemary M, Abdel-Moneam Y, Madkour M, El-Mehasseb I (2011) Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications. J Lumin 131:570–576

    Article  CAS  Google Scholar 

  13. Hayat K, Gondal MA, Khaled MM, Yamani ZH, Ahmed S (2011) Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J Hazard Mater 186:1226–1233

    Article  PubMed  CAS  Google Scholar 

  14. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Caruso RA (2011) Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem 21:20–28

    Article  Google Scholar 

  16. Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  PubMed  CAS  Google Scholar 

  17. Min BK, Heo JE, Youn NK, Joo OS, Lee H, Kim JH, Kim HS (2009) Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catal Commun 10:712–715

    Article  CAS  Google Scholar 

  18. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539

    Article  PubMed  CAS  Google Scholar 

  19. Yogi C, Kojima K, Takai T, Wada NJ (2009) Mater Sci 44:821

    Article  CAS  ADS  Google Scholar 

  20. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  21. Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106:7634–7642

    Article  CAS  Google Scholar 

  22. Addamo M, Bellardita M, Di Paola A, Palmisano L (2006) Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem Commun 21:4943–4945

    Article  Google Scholar 

  23. Uddin MJ, Cesano F, Scarano D, Bonino F, Agostini G, Spoto G et al (2008) Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties. J Photochem Photobiol A Chem 199:64–72

    Article  CAS  Google Scholar 

  24. Tian B, Zhang J, Tong T, Chen F (2008) Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl Catal B 79:394–401

    Article  CAS  Google Scholar 

  25. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    Article  PubMed  CAS  Google Scholar 

  26. Dozzi MV, Prati L, Canton P, Selli E (2009) Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Phys Chem Chem Phys 11:7171–7180

    Article  PubMed  CAS  Google Scholar 

  27. Deng X, Verdaguer A, Herranz T, Weis C, Bluhm H, Salmeron M (2008) Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24:9474–9478

    Article  PubMed  CAS  Google Scholar 

  28. Zhu S, Liang S, Gu Q, Xie L, Wang J, Ding Z et al (2012) Effect of Au supported TiO2 with dominant exposed 001 facets on the visible-light photocatalytic activity. Appl Catal B 119–120:146–155

    Article  Google Scholar 

  29. Kang J-G, Sohn Y (2012) Interfacial nature of Ag nanoparticles supported on TiO2 photocatalysts. J Mater Sci 47:824–832. doi:10.1007/s10853-011-5860-6

    Article  CAS  ADS  Google Scholar 

  30. Wagner CD, Riggs WM, Davis LE, Moulder JF, Mullenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MN

    Google Scholar 

  31. Liu B, Li Q, Zhang B, Cui Y, Chen H, Chen G et al (2011) Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3:2220–2226

    Article  PubMed  CAS  ADS  Google Scholar 

  32. Zhang D, Li G, Wang F, Yu JC (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12:1759–1763

    Article  CAS  Google Scholar 

  33. Kumar K, Nandan B, Formanek P, Stamm M (2011) Fabrication of carbon microtubes from thin films of supramolecular assemblies via self-rolling approach. J Mater Chem 21:10813–10817

    Article  CAS  Google Scholar 

  34. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl Catal A Gen 391:367–376

    Article  CAS  Google Scholar 

  35. Gregg SJ, Sing KSW (1974) Adsorption, surface area, and porosity. Wiley, New York

    Google Scholar 

  36. Chi B, Zhao L, Jin T (2007) One-step template-free route for synthesis of mesoporous N-doped titania spheres. J Phys Chem C 111:6189–6193

    Article  CAS  Google Scholar 

  37. Dong F, Wang H, Wu Z (2009) One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J Phys Chem C 113:16717–16723

    Article  CAS  Google Scholar 

  38. Chang F-W, Yu H-Y, Roselin LS, Yang H-C, Ou T-C (2006) Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2–MOx (M=FeCo, Zn) composite oxides. Appl Catal A 302:157–167

    Article  CAS  Google Scholar 

  39. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  40. Sau T, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261

    Article  CAS  Google Scholar 

  41. Eustis S, Hsu H-Y, El-Sayed MA (2005) Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. J Phys Chem B 109:4811–4815

    Article  PubMed  CAS  Google Scholar 

  42. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  PubMed  CAS  Google Scholar 

  43. Tuncel S, Dumoulin F, Gailer J, Sooriyaarachchi M, Atilla D, Durmus M et al (2011) A set of highly water-soluble tetraethyleneglycol-substituted Zn(ii) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalton Trans 40:4067–4069

    Article  PubMed  CAS  Google Scholar 

  44. Sonawane RS, Dongare MK (2006) Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J Mol Catal A 243:68–76

    Article  CAS  Google Scholar 

  45. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  PubMed  CAS  ADS  Google Scholar 

  46. Vamathevan V, Amal R, Beydoun D, Low G, McEvoy S (2002) Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J Photochem Photobiol A 148:233–245

    Article  CAS  Google Scholar 

  47. Qamar M, Muneer M, Bahnemann D (2006) Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J Environ Manag 80:99–106

    Article  CAS  Google Scholar 

  48. Karunakaran C, Senthilvelan S (2005) Photocatalysis with ZrO2: oxidation of aniline. J Mol Catal A 233:1–8

    Article  CAS  Google Scholar 

  49. Stylidi M, Kondarides DI, Verykios XE (2004) Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl Catal B 47:189–201

    Article  CAS  Google Scholar 

  50. Wilke K, Breuer HD (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A 121:49–53

    Article  CAS  Google Scholar 

  51. Alvaro M, Cojocaru B, Ismail AA, Petrea N, Ferrer B, Harraz FA et al (2010) Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B 99:191–197

    Article  CAS  Google Scholar 

  52. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637

    Article  PubMed  CAS  Google Scholar 

  53. Aiboushev A, Gostev F, Shelaev I, Kostrov A, Kanaev A, Museur L, Traore M, Sarkisov O, Nadtochenko V (2013) Spectral properties of the surface plasmon resonance and electron injection from gold nanoparticles to TiO2 mesoporous film: femtosecond study. Photochem Photobiol Sci 12:631–637

    Article  PubMed  CAS  Google Scholar 

  54. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  PubMed  CAS  ADS  Google Scholar 

  55. Pradhan S, Ghosh D, Chen S (2009) Janus nanostructures based on Au−TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. Appl Mater Interface 1:2060–2065

    Article  CAS  Google Scholar 

  56. Subramanian V, Wolf EE, Kamat PV (2002) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2−Au composite nanoparticles. Langmuir 19:469–474

    Article  Google Scholar 

  57. Arun Kumar D, Alex Xavier J, Merline Shyla J, Xavier F (2013) Synthesis and structural, optical and electrical properties of TiO2/SiO2 nanocomposites. J Mater Sci 48:3700–3707. doi:10.1007/s10853-013-7167-2

    Article  CAS  ADS  Google Scholar 

  58. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor−metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105:11439–11446

    Article  CAS  Google Scholar 

  59. Gonçalves MST, Oliveira-Campos AMF, Pinto EMMS, Plasência PMS, Queiroz MJRP (1999) Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere 39:781–786

    Article  Google Scholar 

  60. Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J et al (2003) Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl Catal B 46:319–332

    Article  CAS  Google Scholar 

  61. Reutergådh LB, Iangphasuk M (1997) Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere 35:585–596

    Article  Google Scholar 

  62. Fernández-Ibáñez P, Blanco J, Malato S, dl Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37:3180–3188

    Article  PubMed  Google Scholar 

  63. Dutta PK, Ray AK, Sharma VK, Millero FJ (2004) Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci 278:270–275

    Article  PubMed  CAS  Google Scholar 

  64. Chadwick MD, Goodwin JW, Lawson EJ, Mills PDA, Vincent B (2002) Surface charge properties of colloidal titanium dioxide in ethylene glycol and water. Colloids Surf A 203:229–236

    Article  CAS  Google Scholar 

  65. Kosmulski M (2003) A literature survey of the differences between the reported isoelectric points and their discussion. Colloids Surf A 222:113–118

    Article  CAS  Google Scholar 

  66. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids. Academic Press, London

    Google Scholar 

  67. Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys Chem Chem Phys 6:865–870

    Article  CAS  Google Scholar 

  68. Hu C, Tang Y, Jiang Z, Hao Z, Tang H, Wong PK (2003) Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl Catal A 253:389–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Kuwait University SAF facilities Nos. (GS 02/08), (GE 01/07), (GS 01/01), (GS01/05), and (GS 03/01). The authors gratefully thank Dr. Mousa M. Mohamed for providing the radiometer data. Dr. Bumajdad wishes to acknowledge helpful discussions with Professor Ahmed Galal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bumajdad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumajdad, A., Madkour, M., Abdel-Moneam, Y. et al. Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49, 1743–1754 (2014). https://doi.org/10.1007/s10853-013-7861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7861-0

Keywords

Navigation