Skip to main content
Log in

Synthesis and structural, optical and electrical properties of TiO2/SiO2 nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sole components of titania (TiO2), silica (SiO2) nanoparticles, and binary TiO2–SiO2 nanocomposites with various molar ratios of silica contents were prepared by modified sol–gel method. The samples were calcined at 500 °C for 5 h and characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, Brunauett–Emmett–Teller (BET), and photoconductivity. The crystallite size for TiO2/SiO2 nanocomposites was calculated using Scherrer’s formula and found to be 5 nm for TiO2 nanoparticles. The binary oxide shows the anatase type of TiO2 at the mole ratio up to 80 mol% of TiO2 added. The band gap for as-synthesized nanocomposites was calculated and it was found that the band gap decreases with increase of SiO2 content and then decreases with excess SiO2 content. FTIR confirms that both TiO2 and SiO2 phases have been formed. The BET surface area for TiO2/SiO2 nanocomposite is found to be 303 m2/g, and pore size distribution has an average pore diameter about 10 nm for 40 mol% of TiO2 added. It also confirms the absence of macropores and the presence of micro and mesopores. The field-dependent dark and photoconductivity studies reveal that the dark and photocurrent increase linearly with applied field confirming the ohmic nature of the electric contacts. The dark and photocurrent increase slightly with increase of SiO2 content and decrease with excess amount of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  2. Baraton M-I (2011) Open Nanosci J 5:64

    Article  CAS  Google Scholar 

  3. Chen X, Mao S (2006) J Nanosci Nanotechnol 6:906

    Article  CAS  Google Scholar 

  4. Zhang F, Yang S, Chen H, Yu X (2004) Ceram Int 30:997

    Article  CAS  Google Scholar 

  5. Pavaspree S, Suzuki Y, Pivsa-Art S, Yoshikawa S (2005) Sci Technol Adv Mater 6:224

    Article  Google Scholar 

  6. Dai S-Y, Wang K-J (2003) Chin Phys Lett 20:953

    Article  Google Scholar 

  7. Lindstrom H, Rensmo H, Sodergren S, Solbrand A, Lindquist SE (1996) J Phys Chem 100:3084. doi:10.1021/jp951314p

    Article  Google Scholar 

  8. Hakki A, Dillert R, Bahnemann D (2009) Catal Today 144:154

    Article  CAS  Google Scholar 

  9. Ohno T, Tagawa S, Itoh H, Suzuki H, Matsuda T (2009) Mater Chem Phys 113:119

    Article  CAS  Google Scholar 

  10. Kitiyanan A, Sakulkhaemaruethai S, Suzuki Y, Yoshikawa S (2006) Compos Sci Technol 66:1259

    Article  CAS  Google Scholar 

  11. Jung SM, Grange P (2000) Catal Today 59:305

    Article  CAS  Google Scholar 

  12. Miciukiewicz J, Mang T, Knozinger H (1995) Appl Catal A 122:151

    Article  CAS  Google Scholar 

  13. Tang A, Teng F, Jin H, Gao Y, Hou Y, Liang C, Wang Y (2007) Mater Lett 61:2178

    Article  CAS  Google Scholar 

  14. Arun Kumar D, Merline Shyla J, Xavier FP (2012) Appl Nanosci. doi:10.1007/s13204-012-0060-5

    Google Scholar 

  15. Zhu Y, Zhang L, Gao C, Cao L (2000) J Mater Sci 35:4049. doi:10.1023/A:1004882120249

    Article  CAS  Google Scholar 

  16. Aguado J, van Rafael G, Maria-Jose L-M, Javier M (2006) Appl Catal A 312:202

    Article  CAS  Google Scholar 

  17. Castro AL, Nunes MR, Carvalho AP, Costa FM, Florencio MH (2008) Solid State Sci 10:602

    Article  CAS  Google Scholar 

  18. Bartram SF (1967) In: Kaelble EF (ed) Handbook of X-rays. McGraw-Hill, New York, p 1

    Google Scholar 

  19. Ponniah D, Xavier F (2007) Phys B 392:20

    Article  CAS  Google Scholar 

  20. Zhao Y, Li C, Liu X, Gu F, Jiang H, Shao W, Zhang L, He Y (2007) Mater Lett 61:79

    Article  CAS  Google Scholar 

  21. Li J, Vizkelethy G, Revesz P, Mayer JW, Tu KN (1991) J Appl Phys 69:1020

    Article  CAS  Google Scholar 

  22. Zhou L, Shanshan Y, Baozhu T, Jinlong Z, Masakazu A (2006) Mater Lett 60:396

    Article  CAS  Google Scholar 

  23. Aziz RA, Sopyan I (2009) Int J Chem 48:951

    Google Scholar 

  24. Shen X, Zhai Y, Sun Y, Gu H (2010) J Mater Sci Technol 26:711

    Article  CAS  Google Scholar 

  25. Singh LP, Agarwal SK, Bhattacharyya SK, Sharma U, Ahalawat S (2011) Nanomater Nanotechnol 1:44

    CAS  Google Scholar 

  26. Khanna PK, Singh N, Charan S (2007) Mater Lett 61:4725

    Article  CAS  Google Scholar 

  27. Oral AY, Mensur E, Aslan MH, Basaran E (2004) Mater Chem Phys 83:140

    Article  CAS  Google Scholar 

  28. Dhar S, Chakrabarti S (1996) Semicond Sci Technol 11:1231

    Article  CAS  Google Scholar 

  29. Nilchi A, Janitabar-Darzi S, Rasouli-Garmarodi S (2011) Mater Sci Appl 2:476

    CAS  Google Scholar 

  30. Sirimahachai U, Ndiege N (2010) J Sol–Gel Sci Technol 56:53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Nanotechnology Research Centre, SRM University, Kattankulathur and Sophisticated Analytical Instrument Facility (SAIF), IIT Madras, Chennai for providing with XRD and HRSEM facilities respectively. The authors are grateful to the Research Team of Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai for the financial and moral support rendered to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Arun Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arun Kumar, D., Alex Xavier, J., Merline Shyla, J. et al. Synthesis and structural, optical and electrical properties of TiO2/SiO2 nanocomposites. J Mater Sci 48, 3700–3707 (2013). https://doi.org/10.1007/s10853-013-7167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7167-2

Keywords

Navigation