Skip to main content
Log in

Enhancing Photocatalytic Activity of Cu2O in Degradation of Sulphonic Acid-Based Dye

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the present investigation, we synthesized copper (I) oxide nanoparticles (NPs) by the coprecipitation method. The obtained materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA), field emission scanning electron microscopy (FESEM), Transmission Electron Microscopy (TEM), and the Brunauer-Emmett-Teller (BET)/Barrett-Joyner-Halenda (BJH) Method. Surface areas and the average particle size were evaluated to be around 4.20 ± 0.04 m2 g−1 and 28 nm, respectively. Then, Ag/Cu2O NPs were synthesized by the same process, examined by X-ray diffraction, and the average particle size obtained was around 118 nm. The photocatalytic degradation of [1,3-Amino phenyl [4-Sulphonic acid][2,6-Dis azo phenyl] 4,4′sulphato ethyl [6′sulpho] ester of Sulphonic acid] (COG-423) was investigated with Cu2O and TiO2 NPs, Cu2O Microparticles (Micro-Ps) and Ag/Cu2O NPs under UV-C irradiation in the presence of hydrogen peroxide as auxiliary oxidant with three parameters including dopant concentration, intensity, and time, as the obtained experimental results showed a good agreement with theoretical values and succeeded to calculate the optimal conditions. Degradation efficiency with Cu2O Micro/NPs under UV-C irradiation (32 W), for 30 min. were determined to be 20.0% and 91.4% respectively, while for the synthesized TiO2 and Ag/Cu2O, NPs were 99.9%. The photocatalytic activity order was of the following nature: Ag/Cu2O ∼ TiO2 NPs > Cu2O NPs > Cu2O Micro-Ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elmi Fard, N., Fazaeli, R., and Ghiasi, R., J. Chem. Eng. Tech., 2016, vol. 39, no. 1, pp.149–157.

    Article  CAS  Google Scholar 

  2. Kianfar, A.H. and Dostani, M., Russ. J. Appl. Chem., 2017, vol. 28, no. 10, pp. 7353–7359.

    CAS  Google Scholar 

  3. Wang, Q., Li, J., Bai, Y., et al., J. Photochem. Photobiol., 2013, vol. 126, pp. 47–54.

    Article  CAS  Google Scholar 

  4. Basha, C.A., Sendhil, J., Selvakumar, K.V., et al., Desalin., 2012, vol. 285, pp. 188–197.

    Article  CAS  Google Scholar 

  5. Moussavi, G. and Mahmoudi, M., J. Hazard. Mater., 2009, vol. 168, nos. 2–3, pp. 806–812.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, L., Yan, F., Su, M., et al., Russ. J. Inorg. Chem., 2009, vol. 54, no. 8, pp. 1210–1216.

    Article  Google Scholar 

  7. Liang, Sh., Zhou, Y., Wu, W., and Zheng, Y., J. Photochem. Photobiol. A: Chemistry, 2017, vol. 346, pp. 168–176.

    Article  CAS  Google Scholar 

  8. Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol. C: Photochemistry Reviews, 2000, vol. 1, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  9. Fujishima, A., Zhang, X., and Tryk, D. A., Surf. Sci. Rep., 2008, vol. 63, p. 515.

    Article  CAS  Google Scholar 

  10. Tseng, C.C., Hsieh, J.H., and Wu, W., Thin Solid Films, 2011, vol. 519, no. 15, pp. 5169–5173.

    Article  CAS  Google Scholar 

  11. Bender, M., Seeling, W., Daube, C., et al., J. Stollenwerk, Thin Solid Films, 1998, vol. 326, nos. 1–2, pp. 67–71.

    Article  CAS  Google Scholar 

  12. Yu, Y., D, F., Yu, J.C., et al., J. Solid State Chem., 2004, vol. 177, no. 12, pp. 4640–4647.

    Article  CAS  Google Scholar 

  13. Lu, C.H., Qi, L.M., Yang, J.H., et al., Adv. Mater., 2005, vol. 17, pp. 2562–2567.

    Article  CAS  Google Scholar 

  14. Figueiredo, V., Elangovan, E., Goncalves, G., et al., J. Phys. Status Solidi A, 2009, vol. 206, no. 9, pp. 2143–2148.

    Article  CAS  Google Scholar 

  15. Wang, W.Z., Wang, G.H., Wang, X.S., et al., J. Adv. Mater., 2002, vol. 14, no. 1, pp. 67–69.

    Article  CAS  Google Scholar 

  16. Li, C.L. and Fu, Z.W., Electrochim. Acta, 2008, vol. 53, no. 12, pp. 4293–4301.

    Article  CAS  Google Scholar 

  17. Park, J.C., Kim, J., Kwon, H., and Song, H., Adv. Mater., 2009, vol. 21, pp. 803–807.

    Article  CAS  Google Scholar 

  18. Zhang, J., Liu, J., Peng, Q., et al., Chem. Mater., 2006, vol. 18, no. 4, pp. 867–871.

    Article  CAS  Google Scholar 

  19. Zhang, H., Zhu, Q., Zhang, Y., et al., Adv. Funct. Mater., 2007, vol. 17, pp. 2766–2771.

    Article  CAS  Google Scholar 

  20. Ma, L.L., Li, H.Z., Qiu, M.Q., et al., Mater. Res. Bull., 2010, vol. 45, no. 8, pp. 961–968.

    Article  CAS  Google Scholar 

  21. Fernando, C.A.N., Bandara, T.M.W.J., and Wethasingha, S.K., Sol. Energ. Mater. Sol. C, 2001, vol. 70, no. 2, pp. 121–129.

    Article  CAS  Google Scholar 

  22. Senevirathna, M.K.I., Pitigala, P.K.D.D.P., Tennakone, K., J. Photochem. Photobiol. A: Chem., 2005, vol. 171, no. 3, pp. 257–259.

    Article  CAS  Google Scholar 

  23. Chang, Y., Teo, J.J., and Zeng, H.C., Langmuir, 2005, vol. 21, no. 3, pp. 1074–1079.

    Article  CAS  PubMed  Google Scholar 

  24. Chao, Q., Li, Z., Hui, W., and Jiang, C., J. Phys. Chem. Lett., 2012, vol. 3, no. 5, pp. 651–657.

    Article  CAS  Google Scholar 

  25. Liu, H., Ni, Y., Wang, F., et al., Colloids Surf. A, 2004, vol. 235, no. 1–3, pp. 79–82.

    Article  CAS  Google Scholar 

  26. Wang, W.Z., Wang, G.H., Wang, X.S., et al., Adv. Mater., 2002, vol. 14, no. 1, pp. 67–69.

    Article  CAS  Google Scholar 

  27. Wang, Z., Chen, X., Liu, J., et al., Room, Solid State Commun., 2004, vol. 130, no. 9, pp. 585–589.

    Article  CAS  Google Scholar 

  28. Xu, H. and Wang, W., Angew. Chem. Int. Ed., 2007, vol. 46, no. 9, pp. 1489–1492.

    Article  CAS  Google Scholar 

  29. Ma, L.L., Li, J.L., Sun, H.Z., et al., Mater. Res. Bull., 2010, vol. 45, no. 8, pp. 961–968.

    Article  CAS  Google Scholar 

  30. Wang, Z., Wang, H., Wang, L., and Pan, L., J. Phys. Chem. Solids, 2009, vol. 70, no. 3–4, pp. 719–722.

    Article  CAS  Google Scholar 

  31. Deo, M., Shinde, D., Yengantiwar, A., et al., J. Mater. Chem., 2012, vol. 22, no. 33, pp. 17055–17062.

    Article  CAS  Google Scholar 

  32. Reda, S.M., Khairy, M., and Mousa, M.A., Arabian J. Chem., 2017, vol. 1, pp. 1–36.

    Google Scholar 

  33. Tao, Sh., Yanga, M., Chena, H., et al., J. Colloid Interface Sci., 2017, vol. 486, pp. 16–26.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Zhou, X., Wang, R., et al., Appl. Catal. B: Environmental, 2014, vol. 154–155, p. 44.

    Article  CAS  Google Scholar 

  35. Yang, J., Li, Zhen, Zhao, C., et al., Mater. Res. Bull., 2014, vol. 60, pp. 530–536.

    Article  CAS  Google Scholar 

  36. Yadolah, D., The Concise Encyclopedia of Statistics, Springer, 2008.

    Google Scholar 

  37. Ghayyem, M.A., Keyhani, M., Behjoomanesh, M., and Tavakoli, R., Conference and Exhibition, Kuala Lumpur, 05 May 2012.

    Google Scholar 

  38. Sohrabi, S., Akhlaghian, F., Process Safety and Environmental Protection, 2016, vol. 99, pp. 120.

    Article  CAS  Google Scholar 

  39. Thomas, H., Salzberg, W., and Thomas, W.J., Academic Press, London, 1967.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fazaeli.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepahvand, M., Fazaeli, R., Jameh-Bozorghi, S. et al. Enhancing Photocatalytic Activity of Cu2O in Degradation of Sulphonic Acid-Based Dye. Russ J Appl Chem 92, 141–149 (2019). https://doi.org/10.1134/S1070427219010208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219010208

Keywords

Navigation