Skip to main content

Advertisement

Log in

Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Approximately, 13.5 % of the standing volume of productive forest land in Sweden is covered by birch and aspen, which provides the vast potential to produce value-added products such as densified wood. This study shows whether it is possible to densify those species with a thermo-hygro-mechanical (THM) process using heat, steam, and pressure. In this process, transverse compression on thin European aspen (Populus tremula) and downy birch (Betula pubescens) boards was performed at 200 °C with a maximum steam pressure of 550 kPa. To obtain a theoretical 50 % compression set, the press’s maximum hydraulic pressure ranged from 1.5 to 7.3 MPa. Preliminary tests showed that ~75 % of the birch boards produced defects (blisters/blows) while only 25 % of the aspen boards did. Mainly, radial delamination associated with internal checks in intrawall and transwall fractures caused small cracks (termed blisters) while blows are characterized by relatively larger areas of delamination visible as a bumpy surface on the panel. Anatomical investigations revealed that birch was more prone to those defects than aspen. However, those defects could be minimized by increasing the pre-treatment time during the THM processing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skogsstyrelsen (2012) Swedish statistical yearbook of forestry. Swedish Forest Agency, Jönköping, Sweden, pp. 380 (ISSN 0491-7847, ISBN 978-91-88462-97-8)

  2. Kutnar A, Kamke FA, Sernek M (2008) Holz Roh Werkst 66:439

    Article  CAS  Google Scholar 

  3. Kutnar A, Kamke FA, Sernek M (2009) Wood Sci Technol 43:57

    Article  CAS  Google Scholar 

  4. Fang C-H, Mariotti N, Cloutier A, Koubaa A, Blanchet P (2012) Eur J Wood Prod 70:155

    Article  CAS  Google Scholar 

  5. Kunesh RH (1961) For Prod J 11:395

    Google Scholar 

  6. Tabarsa T, Chui YH (1997) For Prod J 47:85

    Google Scholar 

  7. Tabarsa T, Chui YH (2000) Wood Fiber Sci 32:144

    CAS  Google Scholar 

  8. Navi P, Girardet F (2000) Holzforschung 54:287

    Article  CAS  Google Scholar 

  9. Kamke FA (2006) Maderas 8:83

    Google Scholar 

  10. Zhou C, Smith GD, Dai C (2009) Holzforschung 63:609

    Article  CAS  Google Scholar 

  11. Navi P, Heger F (2004) MRS Bull 29:332

    Article  Google Scholar 

  12. Schwarze FWMR, Spycher M (2005) Holzforschung 59:358

    Article  CAS  Google Scholar 

  13. Skyba O, Niemz P, Schwarze FWMR (2009) Holzforschung 63:639

    Article  CAS  Google Scholar 

  14. Bodig J (1965) For Prod J 15:197

    Google Scholar 

  15. Easterling KE, Harrysson R, Gibson LJ, Ashby MF (1982) Proc R Soc Lond A 383:31

    Article  Google Scholar 

  16. Nairn JA (2006) Wood Fiber Sci 38:576

    CAS  Google Scholar 

  17. Fukuta S, Takasu Y, Sasaki Y, Hirashima Y (2007) Wood Fiber Sci 39:548

    CAS  Google Scholar 

  18. Dogu D, Tirak K, Candan Z, Unsal O (2010) BioResources 5:2640

    Google Scholar 

  19. Wang JY, Cooper PA (2005) Holz Roh Werkst 63:39

    Google Scholar 

  20. Wang BJ, Dai C (2005) Holzforschung 59:10

    CAS  Google Scholar 

  21. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Biophotonics Int 11:36

    Google Scholar 

  22. Franklin GL (1945) Nature 155:51

    Article  Google Scholar 

  23. Sperry JS, Hacke UG (2004) Am J Bot 91:369

    Article  Google Scholar 

  24. Hacke UG, Sperry JS, Pittermann J (2004) Am J Bot 91:386

    Article  Google Scholar 

  25. Courtney TH (2000) Mechanical behaviour of materials. McGraw-Hill, Boston

    Google Scholar 

  26. Tabarsa T, Chui YH (2001) Wood Fiber Sci 33:223

    CAS  Google Scholar 

  27. Ellis S, Steiner P (2002) IAWA J 23:201

    Article  Google Scholar 

  28. Thomas RJ (1976) Wood Fiber 7:256

    Google Scholar 

  29. Wheeler EA, Thomas RJ (1981) Wood Fiber 13:169

    Google Scholar 

  30. Côté WA (1963) J Polymer Sci C2:231

    Google Scholar 

  31. Behr EA, Sachs IB, Kukachkaa BF, Blew JL (1969) For Prod J 19:31

    Google Scholar 

  32. Booker RE, Kininmonth JA (1978) NZ J For Sci 8:295

    Google Scholar 

  33. Keey RB, Langrish TAG, Walker JCF (2000) Kiln-drying of lumber. Springer-Verlag, Berlin

    Book  Google Scholar 

  34. Beery WH, Ifju G, McLain TE (1983) Wood Fiber Sci 15:395

    Google Scholar 

  35. Hart CA (1984) For Prod J 34:45

    CAS  Google Scholar 

  36. Blomberg J, Persson B (2005) J Wood Sci 50:307

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Union and the European Regional Development Fund, the County Administration of Västerbotten, the Municipality of Skellefteå, and TräCentrum Norr for their financial support. Special thanks are also extended to Birger Marklund, Technician, Luleå University of Technology, Campus Skellefteå for helping with sample preparation and the Centre de Recherche sur le Bois (CRB), Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada for THM processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Ali Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.A., Morén, T., Hagman, O. et al. Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression. J Mater Sci 48, 8571–8579 (2013). https://doi.org/10.1007/s10853-013-7679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7679-9

Keywords

Navigation