Skip to main content
Log in

Improved the electrochemical property of multiwall carbon nanotubes by mesophase pitch fluoride coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surfaces of two types of multiple wall carbon nanotubes (MWCNTs), namely, straight and distorted tubes, were modified by mesophase pitch fluoride coating (PFC). Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy were used to compare the specific surface area (SSA), functional groups, and micrograph of the MWCNTs with and without modified coating. Results show that PFC can improve the SSA of the straight tube (55 %) more significantly than that of the distorted tube (7.27 %). However, surface coating is more easily implemented on the latter (F/C = 0.48) than on the former (F/C = 0.44) because of self-structure features. Electrochemical measurements indicate that PFC may enhance the specific surface capacitance and energy density of the two MWCNTs because of the effect of functional groups on the modified surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Pavitra C, Marches R, Zimmerman NS, Vitetta ES (2008) PNAS 105:8697

    Article  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787

    Article  CAS  Google Scholar 

  4. Stevens R, Nguyen C, Cassell A, Delzeit L, Meyyappan M, Han J (2000) Appl Phys Lett 77(21):3453

    Article  CAS  Google Scholar 

  5. Shi Z, Lian Y, Zhou X, Gu Z, Zhang Y, Iijim S, Zhou L, Yue KT, Zhang S (1999) Carbon 37:1449

    Article  CAS  Google Scholar 

  6. Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Appl Phys Lett 72(26):3437

    Article  CAS  Google Scholar 

  7. Lee CF, Park J (2001) Carbon 39:1891

    Article  CAS  Google Scholar 

  8. Hung ZP, Xu JW, Ren ZF, Wang JH, Siega MP, Provencio PN (1998) Appl Phys Lett 73:3845

    Article  Google Scholar 

  9. Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Phil Trans Royal Soc Lond A 362(1823):2223

    Article  CAS  Google Scholar 

  10. Wang XX, Wang JN, Chnag H, Zhang YF (2007) Adv Funct Mater 17(17):3613

    Article  CAS  Google Scholar 

  11. Fu YB, Ma RB, Chen YM, Jiang DD, Zhang QY, Ma XH (2009) J Mater Sci: Mater Electron 20:709. doi:10.1007/s10854-008-9789-8

    Article  CAS  Google Scholar 

  12. Kuznetzov AA, Lee SB, Zhang M, Baughman RH, Zakhidov AA (2010) Carbon 48(1):41

    Article  CAS  Google Scholar 

  13. Zhang YF, Wang YF, Chen N, Wang YY, Zhang YZ, Zhou ZH, Wei LM (2010) Nano-Micro Lett 2(1):22

    CAS  Google Scholar 

  14. Ajayan PM, Suhr J, Koratkar N (2006) J Mater Sci 41(23):7824

    Article  CAS  Google Scholar 

  15. Battie Y, Ducloux O, Thobois P, Dorval N, Lauret JS, Attal-Trétout B, Loiseau A (2011) Carbon 49(11):3544

    Article  CAS  Google Scholar 

  16. Choi HeeJung, Gong HeeHyun, Park Jun-Young, Hong SungChul (2013) J Mater Sci 48:906. doi:10.1007/s10853-012-6813-4

    Article  CAS  Google Scholar 

  17. Chamssedine F, Guérin K, Dubois M, Disa E, Petit E, EiFawal Z, Hamwi A (2011) J Fluorine Chem 132(12):1072

    Article  CAS  Google Scholar 

  18. Lee Jeong-Min, Kim SangJin, Kim JuWan, Kang PhilHyun, Nho YoungChang, Lee Young-Seak (2009) J Ind Eng Chem 15:66

    Article  CAS  Google Scholar 

  19. Touhara H, Okino F (2000) Carbon 38:241

    Article  CAS  Google Scholar 

  20. Arben Merkoci, Adriano Ambrost, Alfredo de la Escosura-Muňiz, Briza Pérez-López, Maria Guix, Marisa Maltez, Sergio Marin (2010) Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd, New York

  21. Pérez B, Pumera M, Valle MD, Merkoci A, Alegret S (2005) J Nanosci Nanotechnol 5(10):1694

    Article  Google Scholar 

  22. Pérez, López B, Merkoci A (2009) Analyst 134:60

    Article  Google Scholar 

  23. Agüí Lourdes, Yáňez-Sedeňo Paloma, Pingarrón JoséM (2008) Anal Chim Acta 622:11

    Article  Google Scholar 

  24. Zhang JC, Shi JL, Guo XM, Liu L, Guo QG (2010) New Carbon Mater 25(3):199

    Article  Google Scholar 

  25. Zhang JC, Shi JL, Wu GP, Guo XM, Guo QG, Liu L (2011) Carbon 49:1628

    Article  CAS  Google Scholar 

  26. Alain T, Etienne D, Chistine L (2004) J Fluorine Chem 125(11):1639

    Article  Google Scholar 

  27. Zhang JC (2006) Preparation and properties of pitch fluorides. Dissertation, Chinese Academy of Sciences

  28. Ma C, Song Y, Shi JL, Zhang DQ, Zhai XL, Zhong M, Guo QG, Liu L (2013) Carbon 51:290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by all members of Wang and Gao’s research group, College of Chemistry & Chemical Engineering, Shanxi University. The authors are very grateful to them.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengwan Zhang or Jincai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Zhang, S., Zhang, J. et al. Improved the electrochemical property of multiwall carbon nanotubes by mesophase pitch fluoride coating. J Mater Sci 48, 8454–8462 (2013). https://doi.org/10.1007/s10853-013-7661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7661-6

Keywords

Navigation