Skip to main content

Advertisement

Log in

Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A polystyrene-based functional block copolymer is employed as a surface modifier for multi-walled carbon nanotube (MWCNT) paste utilized in the fabrication of a MWCNT counter electrode (CE) in dye-sensitized solar cells (DSSCs). The surface modification of MWCNTs paste improves the dispersibility of MWCNTs, resulting in a facilitated fabrication of electrodes through the screen printing procedure, as evidenced by a lower viscosity and more homogeneous paste, as well as a more uniform MWCNT coating. Upon removing organic compounds from the paste through a thermal treatment procedure, the DSSC with the modified CE exhibits enhanced solar energy conversion efficiency (η) compared with that of the neat MWCNT CE. The behavior stems from an improvement in the overall redox reaction kinetics and the short-circuit current (J sc) of the DSSC. The DSSC also exhibits an improved η value over an extended storage period, which demonstrates a successful combination of processability, performance, and stability of the DSSC achieved by using an optimum amount of surface modifier for MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yen Y-S, Chou H-H, Chen Y-C, Hsu C-Y, Lin JT (2012) J Mater Chem 22:8734

    Article  CAS  Google Scholar 

  2. Grätzel M (2000) Prog Photovolt Res Appl 8:171

    Article  Google Scholar 

  3. Li B, Wang L, Kang B, Wang P, Qiu Y (2006) Sol Energy Mater Sol Cells 90:549

    Article  CAS  Google Scholar 

  4. Murakami TN, Grätzel M (2008) Inorg Chim Acta 361:572

    Article  CAS  Google Scholar 

  5. Bay L, West K, Winther-Jensen B, Jacobsen T (2006) Sol Energy Mater Sol Cells 90:341

    Article  CAS  Google Scholar 

  6. Boennemann H, Khelashvili G, Behrens S, Hinsch A, Skupien K, Dinjus E (2007) J Clust Sci 18:141

    Article  CAS  Google Scholar 

  7. Olsen E, Hagen G, Eric Lindquist S (2000) Sol Energy Mater Sol Cells 63:267

    Article  CAS  Google Scholar 

  8. Zhu H, Wei J, Wang K, Wu D (2009) Sol Energy Mater Sol Cells 93:1461

    Article  CAS  Google Scholar 

  9. Lee WJ, Ramasamy E, Lee DY, Song JS (2008) Sol Energy Mater Sol Cells 92:814

    Article  CAS  Google Scholar 

  10. Wang X, Zhi L, Muellen K (2008) Nano Lett 8:323

    Article  CAS  Google Scholar 

  11. Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q (2007) Electrochem Commun 9:596

    Article  CAS  Google Scholar 

  12. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) J Electrochem Soc 153:A2255

    Article  CAS  Google Scholar 

  13. Ramasamy E, Lee WJ, Lee DY, Song JS (2007) Appl Phys Lett 90:173103

    Article  Google Scholar 

  14. Imoto K, Suzuki M, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K (2003) Electrochemistry 71:944

    CAS  Google Scholar 

  15. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J-i, Murata K (2003) Sol Energy Mater Sol Cells 79:459

    Article  CAS  Google Scholar 

  16. Cha SI, Koo BK, Seo SH, Lee DY (2010) J Mater Chem 20:659

    Article  CAS  Google Scholar 

  17. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) ACS Appl Mater Interfaces 1:1145

    Article  CAS  Google Scholar 

  18. Ramasamy E, Lee WJ, Lee DY, Song JS (2008) Electrochem Commun 10:1087

    Article  CAS  Google Scholar 

  19. Zhu H, Zeng H, Subramanian V, Masarapu C, Hung K-H, Wei B (2008) Nanotechnology 19:465204

    Article  Google Scholar 

  20. Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Chem Lett 32:28

    Article  CAS  Google Scholar 

  21. Nam JG, Park YJ, Kim BS, Lee JS (2010) Scripta Mater 62:148

    Article  CAS  Google Scholar 

  22. Han H, Bach U, Cheng Y-B, Caruso RA, MacRae C (2009) Appl Phys Lett 94:103102

    Article  Google Scholar 

  23. Pettersson H, Gruszecki T, Bernhard R, Häggman L, Gorlov M, Boschloo G, Edvinsson T, Kloo L, Hagfeldt A (2007) Prog Photovolt Res Appl 15:113

    Article  CAS  Google Scholar 

  24. Huang K-C, Wang Y-C, Chen P-Y, Lai Y-H, Huang J-H, Chen Y-H, Dong R-X, Chu C-W, Lin J-J, Ho K-C (2012) J Power Sources 203:274

    Article  CAS  Google Scholar 

  25. Chang L-Y, Lee C-P, Huang K-C, Wang Y-C, Yeh M-H, Lin J-J, Ho K-C (2012) J Mater Chem 22:3185

    Article  CAS  Google Scholar 

  26. Xiea X-L, Mai Y-W, Zhou X-P (2005) Mater Sci Eng R Rep 49:89

    Article  Google Scholar 

  27. Bose S, Khare RA, Moldenaers P (2010) Polymer 51:975

    Article  CAS  Google Scholar 

  28. Hong SC, Shin JE, Choi HJ, Gong HH, Kim K, Park N-G (2010) Ind Eng Chem Res 49:11393

    Article  CAS  Google Scholar 

  29. Choi HJ, Shin JE, Lee G-W, Park N-G, Kim K, Hong SC (2010) Curr Appl Phys 10:S165

    Article  Google Scholar 

  30. Choi IH, Park M, Lee S–S, Hong SC (2008) Eur Polym J 44:3087

    Article  CAS  Google Scholar 

  31. Bahun GJ, Adronov A (2010) J Polym Sci A Polym Chem 48:1016

    Article  CAS  Google Scholar 

  32. Lou S, Daussin R, Cuenot S, Duwez A-S, Pagnoulle C, Detrembleur C, Bailly C, Jerome R (2004) Chem Mater 16:4005

    Article  CAS  Google Scholar 

  33. Petrov P, Stassin F, Pagnoulle C, Jérome R (2003) Chem Commun 2904

  34. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) J Phys Chem B 104:2287

    Article  CAS  Google Scholar 

  35. Bisquert J (2000) Phys Chem Chem Phys 2:4185

    Article  CAS  Google Scholar 

  36. Koide N, Islam A, Chiba Y, Han L (2006) J Photochem Photobiol A 182:296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012005345). This research was also supported by the Nuclear R&D program of the Korean Science and Engineering Foundation and the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chul Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.J., Gong, H.H., Park, JY. et al. Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes. J Mater Sci 48, 906–912 (2013). https://doi.org/10.1007/s10853-012-6813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6813-4

Keywords

Navigation