Skip to main content
Log in

Fabrication and dielectric properties of Na0.5Bi0.5Cu3Ti4O12/poly(vinylidene fluoride) composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Na0.5Bi0.5Cu3Ti4O12 (NBCTO)/poly(vinylidene fluoride) (PVDF) composites with various NBCTO volume fractions were prepared via solution mixing and hot pressing process. The structure, morphology, and dielectric properties of the composites were characterized with X-ray diffraction (XRD), thermal-gravimetric analysis (TGA), scanning electron microscope (SEM), and broadband dielectric spectrometer. The dielectric constant (ε) and dielectric loss (tan δ) of the composites were both found to increase with increasing NBCTO volume fraction within the frequency range of 1–106 Hz at room temperature. Relatively high dielectric constant of 79.8 and low loss of 0.21 at 1 kHz were obtained for the NBCTO/PVDF composite with 50 vol% NBCTO. Additionally, theoretical models like Logarithmic mixture rule, Maxwell–Garnet, Effective medium theory, and Yamada model were also employed to predict the dielectric constant of these composites. The values obtained by the EMT model are in close agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuo DH, Chang CC, Su TY, Wang WK, Lin BY (2001) J Eur Ceram Soc 21:1171

    Article  CAS  Google Scholar 

  2. Dang ZM, Wang HY, Zhang YH, Qi JQ (2005) Macromol Rapid Commun 26:1185

    Article  CAS  Google Scholar 

  3. Dang ZM, Yu YF (2008) Compos Sci Technol 68:171

    Article  CAS  Google Scholar 

  4. Dang ZM, Wang HY, Peng B, Nan CW (2008) J Electroceram 21:381

    Article  CAS  Google Scholar 

  5. Chao F, Liang GZ (2008) Mater Chem Phys 108:306

    Article  CAS  Google Scholar 

  6. Wang FJ, Li W, Xue MS, Yao JP, Lu JS (2011) Compos B 42:87

    Article  Google Scholar 

  7. Dang ZM, Wang HY, Xu HP (2012) Appl Phys Lett 89:112902

    Article  Google Scholar 

  8. Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S (2012) J Mater Sci 47:1378. doi:10.1007/s10853-011-5916-7

    Article  CAS  Google Scholar 

  9. Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R (2008) Compos Sci Technol 68:106

    Article  CAS  Google Scholar 

  10. Hu T, Juuti J, Jantunen H, Vilkman T (2007) J Eur Ceram Soc 27:3997

    Article  CAS  Google Scholar 

  11. Sonoda K, Hu T, Juuti J, Moriya Y, Jantuen H (2010) J Eur Ceram Soc 30:381

    Article  CAS  Google Scholar 

  12. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) Appl Phys Lett 76:3804

    Article  CAS  Google Scholar 

  13. Rao Y, Wong CP (2004) J Appl Polym Sci 92:2228

    Article  CAS  Google Scholar 

  14. Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW (2000) J Solid State Chem 151:323

    Article  CAS  Google Scholar 

  15. Arbatti M, Shan X, Cheng Z (2007) Adv Mater 19:1369

    Article  CAS  Google Scholar 

  16. Prakash BS, Varma KBR (2007) Compos Sci Technol 67:2363

    Article  CAS  Google Scholar 

  17. Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Timmons AB (2008) J Non-Cryst Solids 354:5321

    Article  CAS  Google Scholar 

  18. Wang FJ, Zhou DX, Yu YX (2009) Phys Status Solidi A 206:2632

    Article  CAS  Google Scholar 

  19. Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai JB (2009) Adv Mater 21:2077

    Article  CAS  Google Scholar 

  20. Thomas P, Varughese KT, Dwarakanath K, Varma KBR (2010) Compos Sci Technol 70:539

    Article  CAS  Google Scholar 

  21. Baku S, Singh K, Govindan A (2012) Appl Phys A 107:697

    Article  Google Scholar 

  22. Subramanian MA, Sleight AW (2002) Solid State Sci 4:347

    Article  CAS  Google Scholar 

  23. Ferrarelli MC, Adams TB, Feteira A, Sinclair DC, West AR (2006) Appl Phys Lett 89:212904

    Article  Google Scholar 

  24. Ren HM, Liang PF, Yang ZP (2010) Mater Res Bull 45:1608

    Article  CAS  Google Scholar 

  25. Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) J Phys Chem C 115:18076

    Article  CAS  Google Scholar 

  26. Hakeem NA, Abdelkader HI, El-sheshtawi NA, Eleshmawi IS (2006) J Appl Polym Sci 102:2125

    Article  CAS  Google Scholar 

  27. Esterly DM, Love BJ (2004) J Polym Sci B 42:91

    Article  CAS  Google Scholar 

  28. Sun DL, Wu AY, Yin ST (2008) J Am Ceram Soc 91:169

    Article  CAS  Google Scholar 

  29. Cihan P, Resul E (2008) J Phys: Condens Matter 20:175220

    Article  Google Scholar 

  30. Yang C, Song HS, Liu DB (2013) Compos B 50:180

    Article  CAS  Google Scholar 

  31. Lopes AC, Caparros C, Ferdov S, Lanceros-Mendez S (2013) J Mater Sci 48:2199. doi:10.1007/s10853-012-6995-9

    Article  CAS  Google Scholar 

  32. Gregorio R Jr, Ueno EM (1999) J Mater Sci 34:4489. doi:10.1023/A:1004689205706

    Article  CAS  Google Scholar 

  33. Chanmal CV, Jog JP (2008) Express Polym Lett 4:294

    Article  Google Scholar 

  34. Nan CW (2001) Phys Rev B 63:176201

    Article  Google Scholar 

  35. Rao Y, Qu JM, Marinis T, Wong CP (2000) IEEE Trans Compon Pack Technol 23:680

    Article  CAS  Google Scholar 

  36. Yamada T, Ueda T, Kitayama T (1982) J Appl Phys 53:4328

    Article  CAS  Google Scholar 

  37. Xie SH, Zhu BK, Wei XZ, Xu ZK, Xu YY (2005) Compos A 36:1152

    Article  Google Scholar 

  38. Todd MG, Shi FG (2003) J Appl Phys 94:4551

    Article  CAS  Google Scholar 

  39. Todd MG, Shi FG (2002) Microelectron J 33:627

    Article  CAS  Google Scholar 

  40. Tee DI, Mariatti M, Azizan A, See CH, Chong KF (2007) Compos Sci Technol 67:2584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Natural Science Foundation of Jiangsu Higher Education Institutes (13KJB430021). It was also partially supported by the National Natural Science Foundation of China under Grant of 21074087.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-li Su or He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Yl., Sun, C., Zhang, Wq. et al. Fabrication and dielectric properties of Na0.5Bi0.5Cu3Ti4O12/poly(vinylidene fluoride) composites. J Mater Sci 48, 8147–8152 (2013). https://doi.org/10.1007/s10853-013-7627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7627-8

Keywords

Navigation