Skip to main content

Advertisement

Log in

Damage morphology produced in low-cycle high-load indentations of feldspar porcelain and leucite glass ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on damage morphology created in low-cycle high-load spherical indentations of feldspar porcelain and leucite glass ceramic to mimic teeth clenching or grinding. Maximum contact stresses were evaluated as functions of cycle numbers and applied loads using a Hertz model. The surface damage of the two materials after low-cycle high-load indentation testing was viewed using scanning electron microscopy to understand the relations between crack propagation and microstructures. The results indicate that the maximum contact stresses for both materials reduced significantly with the cycles (ANOVA, p < 0.05) but did not show a significant change with the applied loads (ANOVA, p > 0.05). Feldspar porcelain can endure much less maximum contact stress than leucite glass ceramic. Low-cycle high-load spherical indentations induced extensive ring cracks, wedging of crack faces by debris, fragmentation, and pulverization on feldspar porcelain surfaces. In contrast, leucite glass ceramic surfaces yielded only minimum microcracks at 500 N load and localized fractures and cracks at the higher loads of 600 and 700 N. This study shows that leucite glass ceramic had much higher resistance to low-cycle high-load fatigue impacts than feldspar porcelain and it can be a better choice for restorations under teeth clenching and grinding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kelly JR (1997) Annu Rev Mater Sci 27:443

    Article  CAS  Google Scholar 

  2. Kelly JR (2004) Dent Clin North Am 48:513

    Article  Google Scholar 

  3. Kelly JR (2008) J Am Dent Assoc 139(Suppl):4S

    Google Scholar 

  4. Rekow ED, Silva NRFA, Coelho PG, Zhang Y, Guess P, Thompson VP (2011) J Dent Res 90:937

    Article  CAS  Google Scholar 

  5. Rekow ED, Thompson VP (2007) J Mater Sci Mater Med 18:47

    Article  CAS  Google Scholar 

  6. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR (2011) Dent Clin North Am 55:333

    Article  Google Scholar 

  7. Chen HY, Hickel R, Setcos JC, Kunzelmann K-H (1999) J Prosthet Dent 82:468

    Article  CAS  Google Scholar 

  8. Rekow ED (2006) J Am Dent Assoc 137(Suppl):5S

    Google Scholar 

  9. Giordano R (2006) J Am Dent Assoc 137:14S

    CAS  Google Scholar 

  10. Anusavice KJ (2012) Dent Mater 28:102

    Article  CAS  Google Scholar 

  11. Fasbinder DJ, Dennison JB, Heys DR, Lampe K (2005) J Am Dent Assoc 136:1714

    Google Scholar 

  12. Conrad HJ, Seong WJ, Pesun IJ (2007) J Prosthet Dent 98:389

    Article  CAS  Google Scholar 

  13. Kelly JR (2007) Clin Oral Impl Res 18(3):204

    Google Scholar 

  14. Xu WL, Bronlund JE, Potgieter J, Foster KD, Röhrle O, Pullan AJ, Kieser JA (2008) Mech Mach Theory 43:1353

    Article  Google Scholar 

  15. Steiner M, Mitsias ME, Ludwid K, Kern M (2009) Dent Mater 25:494

    Article  Google Scholar 

  16. Lohbauer U, Müller FA, Petschelt A (2008) Dent Mater 24:250

    Article  CAS  Google Scholar 

  17. Apela E, Deubenerb J, Bernardc A, Hölandc M, Müllerd R, Kapperta H, Rheinbergera V, Hölanda W (2008) J Mech Behav Biomed Mater 1:313

    Article  Google Scholar 

  18. Coelhoa PG, Silvab NR, Bonfantea EA, Guessc PC, Rekowd ED, Thompsona VP (2009) Dent Mater 25:1122

    Article  Google Scholar 

  19. Kelly JR, Rungruanganunt P, Hunter B, Vailati F (2010) J Prosthet Dent 104:228

    Article  CAS  Google Scholar 

  20. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP (2004) Biomaterials 25:2885

    Article  CAS  Google Scholar 

  21. Lawn BR, Deng Y, Lloyd IK, Janal MN, Rekow ED, Thompson VP (2002) J Dent Res 81:433

    Article  CAS  Google Scholar 

  22. Lawn BR, Bhowmick S, Bush MB, Qasim T, Rekow ED, Zhang Y (2007) J Am Ceram Soc 90:1671

    Article  CAS  Google Scholar 

  23. Kim DK, Jung YG, Peterson IM, Lawn BR (1999) Acta Mater 47:4711

    Article  CAS  Google Scholar 

  24. Baren G, Boberick K, McCool J (2001) Crit Rev Oral Biol Med 12:350

    Article  Google Scholar 

  25. Bindl A, Lüthy H, Mörmann WH (2006) Dent Mater 22:29

    Article  CAS  Google Scholar 

  26. Lohbauer U, Krämer N, Petschelt A, Frankenberger R (2008) Dent Mater 24:39

    Article  CAS  Google Scholar 

  27. Studart AR, Filser F, Kocher P, Gauck LJ (2007) Biomaterials 28:2695

    Article  CAS  Google Scholar 

  28. Liu SY, Chen IW (2005) J Am Ceram Soc 74:1197

    Article  Google Scholar 

  29. Ritchie RO (1999) Int J Fract 100:55

    Article  CAS  Google Scholar 

  30. Yin L, Song XF, Qu SF, Han YG, Wang H (2006) J Biomed Mater Res B 79B:365

    Article  CAS  Google Scholar 

  31. Peterson IM, Pajares A, Lawn BR, Thompson VP, Rekow ED (1998) J Dent Res 77:589

    Article  CAS  Google Scholar 

  32. Deng Y, Lawn BR, Lloyd IK (2002) J Biomed Mater B 63:137

    Article  CAS  Google Scholar 

  33. Kim HW, Deng Y, Miranda P, Pajares A, Kim DK, Kim HE, Lawn BR (2001) J Am Ceram Soc 84:2377

    Article  CAS  Google Scholar 

  34. Höland W, Rheinberger V, Apel E, van’t Hoen C (2007) J Eur Ceram Soc 27:1521

    Article  Google Scholar 

  35. Höland W, Rheinberger V, Apel E, van’t Hoen C, Höland M, Dommann A, Obrecht M, Mauth C, Graf-Hausner U (2006) J Mater Sci Mater Med 17:1037

    Article  Google Scholar 

  36. Budinski KG, Budinski MK (2010) Enginering mateirlas: proerpties and selection, 9th edn. Pearson, New Jersey

    Google Scholar 

  37. Lawn BR, Fuller ER (1975) J Mater Sci 10:2016. doi:10.1007/BF00557479

    Article  CAS  Google Scholar 

  38. Kim DK, Jung YG, Peterson IM, Lawn BR (1999) Acta Mater 47:4711

    Article  CAS  Google Scholar 

  39. Lawn BR, Deng Y, Miranda P, Pajares A, Chai H, Kim DK (2002) J Mater Res 17:3019

    Article  CAS  Google Scholar 

  40. Rekow ED, Harsono M, Janal M, Thompson VP, Zhang G (2006) Dent Mater 22:125

    Article  CAS  Google Scholar 

  41. Hernandez AI, Roongruangphol T, Katsube N, Seghi RR (2008) J Prosthet Dent 99:209

    Article  CAS  Google Scholar 

  42. Teixeira EC, Piascik JR, Stoner BR, Thompson JY (2007) J Mater Sci Mater Med 18:1219

    Article  CAS  Google Scholar 

  43. Quinn JB, Quinn GD (1997) J Mater Sci 32:4331. doi:10.1023/A:1018671823059

    Article  CAS  Google Scholar 

  44. Tsitrou EA, Northeast SE, van Noort R (2007) J Dent 35:897

    Article  CAS  Google Scholar 

  45. Lawn BR (1998) J Am Ceram Soc 81:1977

    Article  CAS  Google Scholar 

  46. Li XD, Bhushan B (2003) Surf Coat Tech 163–164:521

    Article  Google Scholar 

  47. Li XD, Bhushan B (2002) Scripta Mater 47:473

    Article  CAS  Google Scholar 

  48. Li XD, Bhushan B (2002) J Appl Phys 91:8334

    Article  CAS  Google Scholar 

  49. Li XD, Bhushan B (1998) Wear 220:51

    Article  CAS  Google Scholar 

  50. Dong XD, Darvell BW (2003) Dent Mater 19:542

    Article  CAS  Google Scholar 

  51. Kelly JR, Runguangaunt P, Vailati F (2010) J Prosthet Dent 104:228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the James Cook University (JCU) collaboration across boundaries grants scheme for funding support. They also thank Mr. James Galbrainth of the JCU School of Engineering & Physical Sciences, Drs. Jennifer Whan and Shane Askew of the JCU Advanced Analytical Center for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Lymer, R., Billiau, N. et al. Damage morphology produced in low-cycle high-load indentations of feldspar porcelain and leucite glass ceramic. J Mater Sci 48, 7902–7912 (2013). https://doi.org/10.1007/s10853-013-7599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7599-8

Keywords

Navigation