Skip to main content

Advertisement

Log in

Fatigue behavior, failure mode, and stress distribution of occlusal veneers: influence of the prosthetic preparation cusp inclinations and the type of restorative material

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effects of cusp inclination of the prosthetic preparation’s occlusal surface and type of restorative material on the fatigue behavior, failure mode, and stress distribution of occlusal veneers.

Materials and methods

Glass fiber–reinforced epoxy resin prosthetic preparations for occlusal veneers with three different occlusal surface cusp inclination degrees (0°, 15°, and 30°) were produced and assigned into six testing groups (n = 11) according to the cusp inclination (0°, 15°, or 30°) and type of restorative material (lithium disilicate—LD or resin composite—RC). Despite different substrate preparation cusp inclination degrees, the restorations were designed maintaining 30° inclination between the cusps at the occlusal surface and a thickness of 0.7 mm at the central groove region of the restorations to be machined in a CAD/CAM system. After cementation, the specimens were stored for about 7 days (under water at 37 °C), and subsequently submitted to a load to failure test (n = 2) and an intermittent cyclic fatigue test (n = 9) (initial load: 100 N; step size: 50 N; cycles/step: 10,000; loading frequency: 20 Hz; loading piston: 6-mm-diameter stainless steel) until observing cracks. The data were analyzed by two-way ANOVA, Kaplan–Meier, and Mantel-Cox post hoc tests. Finite element analysis (FEA) and fractographic analyses were performed.

Results

The fatigue performance of LD and RC occlusal veneers was evaluated based on different prosthetic preparation cusp inclinations. The 0° inclination showed the best fatigue performance for both materials (LD: 944N, RC: 861N), while the 15° and 30° inclinations had lower values (LD: 800N and 533N, RC: 739N and 717N, respectively). The study also found that for a 0° inclination, LD occlusal veneers performed better than RC ones (LD: 944 N > RC: 861N), while for a 30° inclination, RC occlusal veneers had better fatigue performance than LD ones (LD: 533N < RC: 717N). No significant difference was observed between the materials for a 15° inclination (LD: 800N = RC: 739N). The FEA results showed a higher tensile stress concentration on lithium disilicate than on resin composite occlusal veneers. All lithium disilicate occlusal veneers showed radial crack failures, while resin composite occlusal veneers showed Hertzian cone cracks and radial cracks combined.

Conclusion

Considering mechanical perspective only, RC occlusal veneers should be indicated when prosthetic preparation cusps inclinations are 30°. When 0° prosthetic preparation cusps inclinations are observed, LD occlusal veneers will behave mechanically better. When a 15° cusp inclination is preserved, both restorative materials behave similarly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donovan T, Nguyen-Ngoc C, Abd Alraheam I, Irusa K (2021) Contemporary diagnosis and management of dental erosion. J Esthet Restor Dent 33:78–87. https://doi.org/10.1111/jerd.12706

    Article  PubMed  Google Scholar 

  2. Bartlett D, Ganss C, Lussi A (2008) Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs. Clin Oral Investig 12:65–68. https://doi.org/10.1007/s00784-007-0181-5

    Article  PubMed Central  Google Scholar 

  3. Grippo JO, Simring M, Schreiner S (2004) Attrition, abrasion, corrosion and abfraction revisited. J Am Dent Assoc 135:1109–1118. https://doi.org/10.14219/jada.archive.2004.0369

    Article  PubMed  Google Scholar 

  4. Dietschi D, Argente A (2011) A comprehensive and conservative approach for the restoration of abrasion and erosion. Part I: concepts and clinical rationale for early intervention using adhesive techniques. Eur J Esthet Dent 6:20–33

    PubMed  Google Scholar 

  5. Donovan T, Swift EJ (2009) Dental erosion. J Esthet Restor Dent 21:359–364. https://doi.org/10.1111/j.1708-8240.2009.00291.x

    Article  PubMed  Google Scholar 

  6. Schlichting LH, Maia HP, Baratieri LN, Magne P (2011) Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent 105:217–226. https://doi.org/10.1016/S0022-3913(11)60035-8

    Article  PubMed  Google Scholar 

  7. Magne P, Schlichting LH, Maia HP, Baratieri LN (2010) In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent 104:149–157. https://doi.org/10.1016/S0022-3913(10)60111-4

    Article  PubMed  Google Scholar 

  8. Van Dijken JWV, Hasselrot L (2010) A prospective 15-year evaluation of extensive dentin–enamel-bonded pressed ceramic coverages. Dent Mater 26:929–939. https://doi.org/10.1016/j.dental.2010.05.008

    Article  PubMed  Google Scholar 

  9. Johnson AC, Versluis A, Tantbirojn D, Ahuja S (2014) Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res 58:107–114. https://doi.org/10.1016/j.jpor.2014.01.001

    Article  PubMed  Google Scholar 

  10. Demarco F (2011) Erosion and abrasion on dental structures undergoing at-home bleaching. Clin Cosmet Investig Dent 18:45–52. https://doi.org/10.2147/CCIDEN.S15943

    Article  Google Scholar 

  11. Albelasy EH, Hamama HH, Tsoi JKH, Mahmoud SH (2020) Fracture resistance of CAD/CAM occlusal veneers: a systematic review of laboratory studies. J Mech Behav Biomed Mater 110:103948. https://doi.org/10.1016/j.jmbbm.2020.103948

    Article  PubMed  Google Scholar 

  12. Schlichting LH, Resende TH, Reis KR et al (2022) Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: an up to 3-year randomized clinical trial. J Prosthet Dent 128:158.e1-158.e12. https://doi.org/10.1016/j.prosdent.2022.02.009

    Article  PubMed  Google Scholar 

  13. Belli R, Geinzer E, Muschweck A et al (2014) Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 30:424–432. https://doi.org/10.1016/j.dental.2014.01.003

    Article  PubMed  Google Scholar 

  14. Venturini AB, Prochnow C, Pereira GKR et al (2019) Fatigue performance of adhesively cemented glass-, hybrid- and resin-ceramic materials for CAD/CAM monolithic restorations. Dent Mater 35:534–542. https://doi.org/10.1016/j.dental.2019.01.013

    Article  PubMed  Google Scholar 

  15. Morimoto S, Rebello de Sampaio FBW, Braga MM et al (2016) Survival rate of resin and ceramic inlays, onlays, and overlays. J Dent Res 95:985–994. https://doi.org/10.1177/0022034516652848

    Article  PubMed  Google Scholar 

  16. Kunzelmann KH, Jelen B, Mehl A, Hickel R (2001) Wear evaluation of MZ100 compared to ceramic CAD/CAM materials. Int J Comput Dent 4:171–184

    PubMed  Google Scholar 

  17. Magne P, Perakis N, Belser UC, Krejci I (2002) Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design. J Prosthet Dent 87:516–528. https://doi.org/10.1067/mpr.2002.124367

    Article  PubMed  Google Scholar 

  18. Egilmez F, Ergun G, Cekic-Nagas I et al (2018) Does artificial aging affect mechanical properties of CAD/CAM composite materials. J Prosthodont Res 62:65–74. https://doi.org/10.1016/j.jpor.2017.06.001

    Article  PubMed  Google Scholar 

  19. Tekçe N, Pala K, Demirci M, Tuncer S (2016) Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study. Scanning 38:694–700. https://doi.org/10.1002/sca.21317

    Article  PubMed  Google Scholar 

  20. Alghauli M, Alqutaibi AY, Wille S, Kern M (2023) Clinical outcomes and influence of material parameters on the behavior and survival rate of thin and ultrathin occlusal veneers: a systematic review. J Prosthodont Res 67:45–54. https://doi.org/10.2186/jpr.JPR_D_21_00270

    Article  PubMed  Google Scholar 

  21. Dederichs M, Viebranz S, An H, et al (2022) Wear pattern‐associated color stability of prefabricated composite veneers versus ceramic veneers. J Prosthodont 1–7. https://doi.org/10.1111/jopr.13617

  22. Zamboni SC, Nogueira L, Bottino MA et al (2014) The effect of mechanical loading on the cusp defection of premolars restored with direct and indirect techniques. J Contemp Dent Pract 15:75–81. https://doi.org/10.5005/jp-journals-10024-1191

    Article  PubMed  Google Scholar 

  23. Marini G, Saldanha da Rosa L, Machado PS et al (2023) Fatigue performance analysis of strength-graded zirconia polycrystals for monolithic three-unit implant-supported prostheses. J Mech Behav Biomed Mater 140:105736. https://doi.org/10.1016/j.jmbbm.2023.105736

    Article  PubMed  Google Scholar 

  24. Velho HC, da Rosa LS, Dapieve KS et al (2023) How does the occlusal contact region influence the mechanical fatigue performance and fracture region of monolithic lithium disilicate ceramic crowns? J Mech Behav Biomed Mater 140:105746. https://doi.org/10.1016/j.jmbbm.2023.105746

    Article  PubMed  Google Scholar 

  25. Demachkia AM, Velho HC, Valandro LF et al (2023) Endocrown restorations in premolars: influence of remaining axial walls of tooth structure and restorative materials on fatigue resistance. Clin Oral Investig. https://doi.org/10.1007/s00784-023-04895-6

    Article  PubMed  Google Scholar 

  26. Ottoni R, Marocho SMS, Griggs JA, Borba M (2022) CAD/CAM versus 3D-printing/pressed lithium disilicate monolithic crowns: adaptation and fatigue behavior. J Dent 123:104181. https://doi.org/10.1016/j.jdent.2022.104181

    Article  PubMed  Google Scholar 

  27. Chen Y, Maghami E, Bai X et al (2023) Which dentine analogue material can replace human dentine for crown fatigue test? Dent Mater 39:86–100. https://doi.org/10.1016/j.dental.2022.11.020

    Article  PubMed  Google Scholar 

  28. Bergamo ETP, Bordin D, Ramalho IS et al (2019) Zirconia-reinforced lithium silicate crowns: effect of thickness on survival and failure mode. Dent Mater 35:1007–1016. https://doi.org/10.1016/j.dental.2019.04.007

    Article  PubMed  Google Scholar 

  29. Sasany R, Yilmaz B (2022) Marginal discrepancy and fracture load of thermomechanically fatigued crowns fabricated with different CAD-CAM techniques. J Prosthodont. https://doi.org/10.1111/jopr.13612

    Article  PubMed  Google Scholar 

  30. Sirous S, Navadeh A, Ebrahimgol S, Atri F (2022) Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: a systematic review. Clin Exp Dent Res 8:1391–1403. https://doi.org/10.1002/cre2.653

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mueller B, Pilecco RO, Valandro LF et al (2023) Effect of immediate dentin sealing on load-bearing capacity under accelerated fatigue of thin occlusal veneers made of CAD-CAM glass-ceramic and resin composite material. Dent Mater 39:372–382. https://doi.org/10.1016/j.dental.2023.03.003

    Article  PubMed  Google Scholar 

  32. Gierthmuehlen PC, Jerg A, Fischer JB et al (2022) Posterior minimally invasive full-veneers: effect of ceramic thicknesses, bonding substrate, and preparation designs on failure-load and -mode after fatigue. J Esthet Restor Dent 34:145–153. https://doi.org/10.1111/jerd.12861

    Article  PubMed  Google Scholar 

  33. Abu-Izze FO, Ramos GF, Borges ALS et al (2018) Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater 34:1401–1409. https://doi.org/10.1016/j.dental.2018.06.017

    Article  PubMed  Google Scholar 

  34. Ivoclar (2018) Tetric CAD: Pretreatment and cementation of Tetric CAD restorations with Multilink Automix. https://www.ivoclar.com/en_li/downloadcenter/#dc=global&lang=en&search-text=tetriccad&details=20110. Accessed 15 May 2023

  35. Kelly JR, Rungruanganunt P, Hunter B, Vailati F (2010) Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent 104:228–238. https://doi.org/10.1016/S0022-3913(10)60129-1

    Article  PubMed  Google Scholar 

  36. Velho HC, Dapieve KS, Borges ALS et al (2022) Effects of material and piston diameter on the fatigue behavior, failure mode, and stress distribution of feldspathic ceramic simplified restorations. J Mech Behav Biomed Mater 134:105398. https://doi.org/10.1016/j.jmbbm.2022.105398

    Article  PubMed  Google Scholar 

  37. Velho HC, Dapieve KS, Rocha Pereira GK et al (2020) Accelerated loading frequency does not influence the fatigue behavior of polymer infiltrated ceramic network or lithium disilicate glass-ceramic restorations. J Mech Behav Biomed Mater 110:103905. https://doi.org/10.1016/j.jmbbm.2020.103905

    Article  PubMed  Google Scholar 

  38. Dibner AC, Kelly JR (2016) Fatigue strength of bilayered ceramics under cyclic loading as a function of core veneer thickness ratios. J Prosthet Dent 115:335–340. https://doi.org/10.1016/j.prosdent.2015.09.017

    Article  PubMed  Google Scholar 

  39. de Carvalho Ramos N, Campos TMB, de La Paz IS et al (2016) Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater 32:870–878. https://doi.org/10.1016/j.dental.2016.03.018

    Article  Google Scholar 

  40. Machry RV, Borges ALS, Pereira GKR et al (2021) Influence of the foundation substrate on the fatigue behavior of bonded glass, zirconia polycrystals, and polymer infiltrated ceramic simplified CAD-CAM restorations. J Mech Behav Biomed Mater 117:104391. https://doi.org/10.1016/j.jmbbm.2021.104391

    Article  PubMed  Google Scholar 

  41. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  42. Weitzel ISSL, Rangel JHR, Perim MP et al (2020) Mechanical performance of monolithic materials cemented to a dentin-like substrate. J Prosthet Dent 123:753.e1-753.e7. https://doi.org/10.1016/j.prosdent.2019.12.021

    Article  PubMed  Google Scholar 

  43. Dapieve KS, Machry RV, Pereira GKR et al (2021) Alumina particle air-abrasion and aging effects: fatigue behavior of CAD/CAM resin composite crowns and flexural strength evaluations. J Mech Behav Biomed Mater 121:104592. https://doi.org/10.1016/j.jmbbm.2021.104592

    Article  PubMed  Google Scholar 

  44. Machry RV, Dapieve KS, Valcanaia A et al (2022) Thickness and internal adjustment of monolithic resin composite milled crowns: effect on the load-bearing capacity under fatigue. J Mech Behav Biomed Mater 134:105407. https://doi.org/10.1016/j.jmbbm.2022.105407

    Article  PubMed  Google Scholar 

  45. Zhang Y, Bhowmick S, Lawn BR (2005) Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: monoliths. J Mater Res 20:2021–2029

    Article  Google Scholar 

Download references

Funding

This study was partly supported by the Brazilian Federal Agency for Coordination of Improvement of Higher Education Personnel – CAPES, Brazil (Grant # 001, Doctorate Scholarship of H.C.V. and K.S.D), by the Foundation to Research Support of the Rio Grande do Sul State (FAPERGS; Grants #18/2551-0000520-7 and #19/2551-0001221-7), and by Brazilian National Council for Scientific and Technological Development (CNPq) (Grants #308427/2021-1).

Author information

Authors and Affiliations

Authors

Contributions

Helder Callegaro Velho: conceptualization, data curation, formal analysis, methodology, writing—original draft. Kiara Serafini Dapieve: methodology, formal analysis, data curation, writing—review and editing. Elisa Donária Aboucauch Grassi: methodology, formal analysis, data curation, writing—review and editing. Alexandre Luis Souto Borges: data curation, methodology, writing—review and editing. Renata Marques de Melo Marinho: data curation, methodology, writing—review and editing. Gabriel Kalil Rocha Pereira: supervision, formal analysis, data curation, writing—review and editing, validation. Andressa Borin Venturini: conceptualization, supervision, formal analysis, data curation, writing—review and editing. Luiz Felipe Valandro: conceptualization, supervision, funding acquisition, formal analysis, data curation, writing—review and editing.

Corresponding author

Correspondence to Luiz Felipe Valandro.

Ethics declarations

Informed consent

Written informed consent was taken from all participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velho, H.C., Dapieve, K.S., Grassi, E.D.A. et al. Fatigue behavior, failure mode, and stress distribution of occlusal veneers: influence of the prosthetic preparation cusp inclinations and the type of restorative material. Clin Oral Invest 27, 5539–5548 (2023). https://doi.org/10.1007/s00784-023-05173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05173-1

Keywords

Navigation