Skip to main content

Advertisement

Log in

Dynamic fatigue and strength characterization of three ceramic materials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fracture strength and fatigue parameters of three ceramic materials submitted to dynamic fatigue were evaluated. A machinable leucite-reinforced dental ceramic, aluminum oxide, and yttria-stabilized zirconia (YSZ) were tested. The inert strength of the materials was determined in air (25 °C) at stressing rates of 70, 250, 400 MPa/s for Porcelain, Alumina and YSZ respectively. The data was analyzed using a two-parameter Weibull distribution. The Weibull modulus (m) and the characteristic of fracture (σ 0) parameters were determined for each material. Specimens were also tested in 3-point bending at different stressing rates in distilled/deionized water at 37 °C (dynamic fatigue) in order to calculate the fatigue parameters n and ln B. The strength for each material was characterized using Strength–Probability–Time (SPT) diagrams for 1 day, 1 year and 10 years. YSZ showed a high-fracture strength σ 0 (1,459 MPa) at a failure probability of 63.2% and high resistance to subcritical crack growth. YSZ and alumina showed better resistance to slow crack growth than porcelain, indicating less susceptibility to strength degradation by stress corrosion. Lifetime predictions after 10 years indicate a reduction of 50%, 36% and 29% in strength for porcelain, alumina and YSZ respectively. YSZ seems to be a very promising material for long-term dental and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. J. ANUSAVICE, JADA 124 (1993) 72

    CAS  Google Scholar 

  2. R. MORENA, G. M. BEAUDREAU, P. E. LOCKWOOD, A. L. EVANS and C. W. FAIRHURST, J. Dent. Res. 65 (1986) 993

    CAS  Google Scholar 

  3. J. TINSCHERT, D. ZWEZ, R. MARX and K. J. ANUSAVICE, J. Dent. 28 (2000) 529

    Article  CAS  Google Scholar 

  4. J. R. KELLY, Dent. Mater. 11 (1995) 103

    Article  CAS  Google Scholar 

  5. G. SJOGREN and R. LANTTO et al J. Prosthet. Dent. 81 (1999) 277

    Article  CAS  Google Scholar 

  6. Y. ZHANG, B. R. LAWN, E. D. REKOW and V. P. THOMPSON, J. Biomed. Mater. Res. 71B (2004) 381

    Article  CAS  Google Scholar 

  7. K. PALLIS, J. A. GRIGGS, R. D. WOODY, G. E. GUILLEN and A. W. MILLER J. Prosthet. Dent. 91 (2004) 561

    Article  CAS  Google Scholar 

  8. T. KOSMAC, C. OBLAK, P. JEVNIKAR, N. FUNDUK and L. MARION, Dent. Mater. 15 (1999) 426

    Article  CAS  Google Scholar 

  9. M. GUAZZATO, M. ALBAKRY, L. QUACH and M. V. SWAIN, Dent. Mater. 21 (2005) 454

    Article  CAS  Google Scholar 

  10. J. Y. THOMPSON, K. J. ANUSAVICE, A. NAMAN and H. F. MORRIS, J. Dent. Res. 73 (1994) 1824

    CAS  Google Scholar 

  11. J. R. KELLY, S. D. CAMPBELL and H. K. BOWEN, J. Prosthet. Dent. 62 (1989) 536

    Article  CAS  Google Scholar 

  12. J. A. SALEM and M. G. JENKINS, ASTM STP 1409 (2002) 213

    Google Scholar 

  13. R. G. CHADWICK, J. Dent. 22 (1994) 364

    Article  CAS  Google Scholar 

  14. D. S. TUCKER, J. Am. Ceram. Soc. 73 (1990) 2528

    Article  CAS  Google Scholar 

  15. J. E. RITTER, in “Fracture Mechanics of Ceramics” (Plenum Publishing Co., NY, 1978), p 661

  16. W. WEIBULL, J. Appl. Mech. 18 (1951) 293

    Google Scholar 

  17. U. LOHBAUER, A. PETSCHELT and P. GREIL, J. Biomed. Mater. Res. 63 (2002) 780

    Article  CAS  Google Scholar 

  18. A. H. DE AZA, J. CHEVALIER, G. FANTOZZI, M. SCHECHL and R. TORRECILLAS, Biomaterials 23 (2002) 937

    Article  CAS  Google Scholar 

  19. Y. ZHANG and B. R. LAWN, J. Biomed. Mater. Res. 69B (2004) 2019

    Article  Google Scholar 

  20. G. J. QIAO, W. HONGJIE and J. ZHIHAO, Int. J. Fatigue 24 (2002) 499

    Article  CAS  Google Scholar 

  21. V. P. THOMPSON and E. D. REKOW, J. Appl. Oral. Sci. 12 (2004) 26

    Article  Google Scholar 

  22. J. A. HANKINSON, E. G. CAPPETTA, Int. J. Periodontics Restorative Dent. 14 (1994) 138

    CAS  Google Scholar 

  23. H. Y. CHEN, R. HICKEL, J. C. SETCOS and K. H. KUNZELMANN J. Prosthet. Dent. 82 (1999) 468

    Article  CAS  Google Scholar 

  24. A. ATTIA and M. KERN, J. Prosthet. Dent. 92 (2004) 551

    Article  CAS  Google Scholar 

  25. S. N. WHITE, Z. C. LI, Z. YU and V. KIPNIS, Dent. Mater. 13 (1997) 103

    Article  CAS  Google Scholar 

  26. J. E. RITTER, T. H. SERVICE and C. GUILLEMET, Glass Technol. 26 (1985) 273

    CAS  Google Scholar 

Download references

Acknowledgments

Research supported by NIH/NIDCR Grant DE13511-04. Materials contributed by Ivoclar Vivadent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica C. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, E.C., Piascik, J.R., Stoner, B.R. et al. Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci: Mater Med 18, 1219–1224 (2007). https://doi.org/10.1007/s10856-007-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-0131-4

Keywords

Navigation