Skip to main content
Log in

Porous silica as host for PEG-supported coumarin molecules

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The design of novel organic–inorganic systems made of poly(ethyleneglycol) (PEG)-supported coumarin loaded into porous silica is presented. The hybrid system was obtained by impregnation of a xerogel silica matrix with a PEG-supported coumarin ethanolic solution. The chemical and physical properties of the hybrid systems are evaluated by means of infrared spectroscopy and thermo-gravimetric analysis, and correlated to UV–Vis optical absorption and time-resolved photoluminescence. It was found that the optical properties of the coumarin, which are not affected by the polymeric PEG support, are preserved upon loading into the silica porous support. The hybrid material obtained may represent a tool for drug delivery as the release of the PEG-supported coumarin from the silica xerogel into water media takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trenor SR, Shults AR, Love BJ, Long TE (2004) Chem Rev 104:3059. doi:10.1021/cr030037c

    Article  CAS  Google Scholar 

  2. Serin J, Schultze X, Adronov A, Frechet JMJ (2002) Macromolecules 35:5396. doi:10.1021/ma020265t

    Article  CAS  Google Scholar 

  3. Ricci PC, Da Pozzo A, Palmas S, Muscas F, Carbonaro CM (2012) Chem Phys Lett 531:160. doi:10.1016/j.cplett.2012.02.024

    Article  CAS  Google Scholar 

  4. Mal NK, Fujiwara M, Tanaka Y (2003) Nature 421:350. doi:10.1038/nature01362

    Article  CAS  Google Scholar 

  5. Wagner BD (2009) Molecules 14:210. doi:10.3390/molecules14010210

    Article  CAS  Google Scholar 

  6. Murray RDH, Medez J, Brown SA (1982) The natural coumarins: occurrence, chemistry and biochemistry. Wiley, New York

    Google Scholar 

  7. Barberis VP, Mikroyannidis JA, Cimrova V (2006) J Polym Sci 44:5750. doi:10.1002/pola.21655

    CAS  Google Scholar 

  8. Trenor SR, Love BJ, Long TE (2004) Macromol Chem Phys 205:715. doi:10.1002/macp.200300168

    Article  CAS  Google Scholar 

  9. Cohen B, Huppert D (2001) J Phys Chem A 105:7157. doi:10.1021/jp010576q

    Article  CAS  Google Scholar 

  10. Cohen B, Huppert D (2002) J Phys Chem A 106:1946. doi:10.1021/jp011915i

    Article  CAS  Google Scholar 

  11. Moriya T (1983) Bull Chem Soc Jpn 56:6

    Article  CAS  Google Scholar 

  12. Moriya T (1988) Bull Chem Soc Jpn 61:1873

    Article  CAS  Google Scholar 

  13. Choudhury SD, Nath S, Pal H (2008) J Phys Chem B 112:7748. doi:10.1021/jp8004019

    Article  CAS  Google Scholar 

  14. Choudhury SD, Pal H (2009) J Phys Chem B 113:6736. doi:10.1021/jp8111759

    Article  CAS  Google Scholar 

  15. Kobayashi T (1978) J Phys Chem 82:2277. doi:0022-365417812082-2277

    Article  CAS  Google Scholar 

  16. Georgieva I, Trendafilova N, Aquino A, Lischka H (2005) J Phys Chem A 109:11860. doi:10.1021/jp0524025

    Article  CAS  Google Scholar 

  17. Georgieva I, Trendafilova N, Aquino A, Lischka H (2007) J Phys Chem A 111:127. doi:10.1021/jp0662202

    Article  CAS  Google Scholar 

  18. Reynolds GA, Drexhage KH (1975) Opt Commun 13:222

    Article  CAS  Google Scholar 

  19. Drexhage KH, Erikson GR, Hawks GH, Reynolds GA (1975) Opt Commun 15:399

    Article  CAS  Google Scholar 

  20. Tocco G, Carbonaro CM, Meli G, Podda G (2009) Molecules 14:1044. doi:10.3390/molecules14031044

    Article  CAS  Google Scholar 

  21. Carbonaro CM, Ricci PC, Casula MF, Tocco G, Cubeddu M (2012) J Phys Chem A. doi:10.1021/jp3080628

    Google Scholar 

  22. Carbonaro CM, Ricci PC, Grandi S, Marceddu M, Corpino R, Salis M, Anedda A (2012) RSC Adv 2:1905. doi:10.1039/c2ra00830k

    Article  CAS  Google Scholar 

  23. Malfatti L, Kidchob T, Aiello D, Aiello R, Testa F, Innocenzi P (2008) J Phys Chem C 112:16225. doi:10.1021/jp801392f

    Article  CAS  Google Scholar 

  24. Anedda A, Carbonaro CM, Clemente F, Corpino R, Grandi S, Magistris A, Mustarelli PC (2005) J Non-Cryst Solids 351:1850. doi:10.1016/j.jnoncrysol.2005.04.027

    Article  CAS  Google Scholar 

  25. Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956. doi:10.1021/j150668a042

    Article  CAS  Google Scholar 

  26. Ferrer ML, del Monte F, Levy D (2003) Langmuir 19:2782. doi:10.1021/la026685t

    Article  CAS  Google Scholar 

  27. Deshpande AV, Kumar U (2010) J Lumin 130:839. doi:10.1016/j.jlumin.2009.12.010

    Article  CAS  Google Scholar 

  28. Grandi S, Tomasi C, Mustarelli P, Clemente F, Carbonaro CM (2007) J Sol–Gel Sci Technol 41:57. doi:10.1007/s10971-006-0119-4

    Article  CAS  Google Scholar 

  29. Anedda A, Carbonaro CM, Corpino R, Ricci PC, Grandi S, Mustarelli PC (2007) J Non-Cryst Solids 353:481. doi:10.1016/j.jnoncrysol.2006.10.014

    Article  CAS  Google Scholar 

  30. Carbonaro CM, Anedda A, Grandi S, Magistris A (2006) J Phys Chem B 110:12932. doi:10.1021/jp056448+

    Article  CAS  Google Scholar 

  31. Carbonaro CM, Meinardi F, Ricci PC, Salis M, Anedda A (2009) J Phys Chem B 113:5111. doi:10.1021/jp810835j

    Article  CAS  Google Scholar 

  32. Cebrián V, Yagüe C, Arruebo M, Martín-Saavedra FM, Santamaría J, Vilaboa N (2011) J Nanopart Res 13:4097. doi:10.1007/s11051-011-0353-8

    Article  Google Scholar 

  33. Bhowmick TK, Yoon D, Patel M, Fisher J, Ehrman S (2010) J Nanopart Res 12:2757. doi:10.1007/s11051-010-9849-x

    Article  CAS  Google Scholar 

  34. Liu Q, DeShong P, Zachariah MR (2012) J Nanopart Res 14:923. doi:10.1007/s11051-012-0923-4

    Article  CAS  Google Scholar 

  35. Zhu S, Zhang D, Yang N (2009) J Nanopart Res 11:561. doi:10.1007/s11051-007-9325-4

    Article  CAS  Google Scholar 

  36. Casula MF, Loche D, Marras S, Paschina G, Corrias A (2007) Langmuir 23:3509. doi:10.1021/la0635799

    Article  CAS  Google Scholar 

  37. Innocenzi P (2003) J Non-Cryst Solids 316:309. doi:10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  38. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2003) J Phys Chem B 107:13661. doi:10.1021/jp036691d

    Article  CAS  Google Scholar 

  39. Salis A, Casula MF, Bhattacharyya MS, Pinna M, Solinas V, Monduzzi M (2010) ChemCatChem 2:322. doi:10.1002/cctc.200900288

    Article  CAS  Google Scholar 

Download references

Acknowledgement

C.M. Carbonaro and P.C. Ricci thank the RAS (Regione Autonoma della Sardegna) with a mobility and networking grant for the economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Carbonaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonaro, C.M., Casula, M.F., Ricci, P.C. et al. Porous silica as host for PEG-supported coumarin molecules. J Mater Sci 48, 6797–6802 (2013). https://doi.org/10.1007/s10853-013-7484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7484-5

Keywords

Navigation