Skip to main content

Advertisement

Log in

On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle–plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinc A, Thomas M, Klibanov AM, Langer R (2004) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  Google Scholar 

  • Balas F, Manzano M, Colilla M, Vallet-Regí M (2008) L-Trp adsorption into silica mesoporous materials to promote bone formation. Acta Biomater 4:514–522

    Article  CAS  Google Scholar 

  • Deguchi S, Yamazaki T, Mukai S, Usami R, Horikoshi K (2007) Stabilization of C-60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem Res Toxicol 20:854–858

    Article  CAS  Google Scholar 

  • Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadan S, Yagüe C, Fernández-Pacheco R, Ibarra R, Santamaría J, González-Fernández A (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034

    Article  Google Scholar 

  • Gemeinhart RA, Luo D, Saltzman WM (2005) Cellular fate of a modular dna delivery system mediated by silica nanoparticles. Biotechnol Prog 21:532–537

    Article  CAS  Google Scholar 

  • Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593

    Article  CAS  Google Scholar 

  • Heister E, Lamprecht C, Neves V, Tilmacius C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley HM, Silva SR, McFadden J (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626

    Article  CAS  Google Scholar 

  • Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) A nonviral dna delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem 11:926–932

    Article  CAS  Google Scholar 

  • Kozlowski A, Harris JM (2001) Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J Control Release 72:217–224

    Article  CAS  Google Scholar 

  • Kulak A, Lee YJ, Park YS, Yoon KB (2000) Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups. Angew Chem Int Ed 39:950–953

    Article  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 18:893–895

    Article  CAS  Google Scholar 

  • Marcelo G, Tarazona MP, Saiz E (2005) Solution properties of poly (diallyldimethylammonium chloride) (PDDA). Polymer 46:2584–2594

    Article  CAS  Google Scholar 

  • Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharma 359:280–287

    Article  CAS  Google Scholar 

  • Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  CAS  Google Scholar 

  • Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Lindén M (2009) Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett 9:3308–3311

    Article  CAS  Google Scholar 

  • Roshenholm J, Sahlgren C, Lindén M (2010) Cancer cell targeting and cell specific delivery by mesoporous silica nanoparticles. J Mater Chem 20:2707–2713

    Article  Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129

    Article  CAS  Google Scholar 

  • Tan K, Cheang P, Ho I, Lam P, Hui KM (2007) Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen. Gene Ther 14:828–835

    Article  CAS  Google Scholar 

  • Tantra R, Tompkins J, Quincey P (2010) Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloid Surf B Biointerf 75:275–281

    Article  CAS  Google Scholar 

  • Tolnai G, Csempesz F, Kabai-Faix M, Kalman E, Keresztes Z, Kovacs AL, Ramsden JJ, Horvolgyi Z (2001) Preparation and characterization of surface-modified silica-nanoparticles. Langmuir 17:2683–2687

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 10:3273–3286

    Article  Google Scholar 

  • Yagüe C, Moros M, Grazú V, Arruebo M, Santamaría J (2008) Synthesis and stealthing study of bare and PEGylated silica micro- and nanoparticles as potential drug delivery vectors. Chem Eng J 137:42–53

    Article  Google Scholar 

  • Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  CAS  Google Scholar 

  • Yiu HP, McBain SC, El Haj AJ, Dobson J (2007) A triple-layer design for polyethyleneimine-coated, nanostructured magnetic particles and their use in DNA binding and transfection. Nanotechnology 18:435601–435607

    Article  Google Scholar 

  • Yu J, Zhao H, Ye L, Yang H, Ku S, Yang N, Xiao N (2009) Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by glioma cells in vitro. J Mater Chem 19:1265–1270

    Article  CAS  Google Scholar 

  • Zeng W, Qian XF, Zhang YB, Yin J, Zhu ZK (2005) Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater Res Bull 40:766–772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants MAT2009-14695-C04-02 from the Ministerio de Ciencia e Innovación, grants from Fundación Mutua Madrileña to NV, and from Fundación Ramón Areces to MA. VC is the recipient of a predoctoral award from Comunidad de Madrid. MA acknowledges the support from the 2006 Ramón y Cajal program (order ECI/158/2005). NV and FM-S are supported by program I3SNS and Sara Borrell, respectively, from Fondo de Investigaciones Sanitarias. We thank Laura Saldaña (CIBER-BBN and Hospital Universitario la Paz-IdiPAZ) for helpful suggestions and excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Arruebo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cebrián, V., Yagüe, C., Arruebo, M. et al. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors. J Nanopart Res 13, 4097–4108 (2011). https://doi.org/10.1007/s11051-011-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0353-8

Keywords

Navigation