Skip to main content
Log in

Hydrophobic monolithic silica with abundant pore as efficient adsorbent for organic contaminants removal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrophobic (water CA, 155° ± 5°) monolithic silica (HMS) material with abundant pore was prepared via sol–gel method by using tetraethoxysilane as silicon source and trimethylchlorosilane as surface modification agent. High specific area and appropriate pores structure of the HMS material supply enough space for storing the absorbed molecules. The maximum adsorptive ability toward organic contaminants can reach 14 times the monolith’s weight. It is worth mentioning that saturated adsorption can be reached in a short time due to the interconnected macropores, which ensure that adsorbate diffuse in the bulk easily. In addition, it was verified that after an easy evaporation condensing treatment, the regenerated HMS material could retain its initial adsorption capacity. High adsorption capacities and good regeneration capability for organic-contaminants removal give the HMS material potential applications in wastewater treatment, chemical accident remediation, and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ayoko GA, Singh K, Balerea S, Kokot S (2007) J Hydrol 336:115

    Article  Google Scholar 

  2. Jones AP (1999) Atmos Environ 33:4535

    Article  CAS  Google Scholar 

  3. Wang D, McLaughlin E, Pfeffer R, Lin YS (2011) Chem Eng J 168:1201

    Article  CAS  Google Scholar 

  4. Konishi M, Kishimoto M, Tamesui N, Omasa T, Shioya S, Ohtake H (2005) Biochem Eng J 24:49

    Article  CAS  Google Scholar 

  5. Hoff RZ (1993) Mar Pollut Bull 26:476

    Article  CAS  Google Scholar 

  6. Atlas RM (2007) J Chem Technol Biotechnol 52:149

    Article  Google Scholar 

  7. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) J Porous Mater 10:159

    Article  CAS  Google Scholar 

  8. Smirnova I, Mamic J, Arlt W (2003) Langmuir 19:8521

    Article  CAS  Google Scholar 

  9. Zhang YL, Wei S, Liu FJ, Du YC, Liu S, Ji YY, Yokoib T, Tatsumib T, Xiao F (2009) Nanotoday 4:135

    Article  CAS  Google Scholar 

  10. Karakutuk I, Okay O (2010) React Funct Polym 70:585

    Article  CAS  Google Scholar 

  11. Duong H, Burford RP (2006) J Appl Polym Sci 99:360

    Article  CAS  Google Scholar 

  12. Ceylan D, Dogu S, Karacik B, Yakan SD, Okay OS, Okay O (2009) Environ Sci Technol 43:3846

    Article  CAS  Google Scholar 

  13. Tanobe VOA, Sydenstricker THD, Amico SC, Vargas JVC, Zawadzki SF (2009) J Appl Polym Sci 111:1842

    Article  CAS  Google Scholar 

  14. Husseien M, Amer AA, ElMaghraby A, Hamedallah N (2009) J Anal Appl Pyrol 86:360

    Article  CAS  Google Scholar 

  15. Hussein M, Amer AA, Sawsan II (2008) J Anal Appl Pyrol 82:205

    Article  CAS  Google Scholar 

  16. Radetic M, Ilic V, Radojevic D, Miladinovic R, Jocic D, Jovancic P (2008) Chemosphere 70:525

    Article  CAS  Google Scholar 

  17. Viraraghavan T, Mathavan GN (2007) Water Pollut Res J Can 25:73

    Google Scholar 

  18. Solisio C, Lodi A, Converti A, Borghi MD (2002) Water Res 36:899

    Article  CAS  Google Scholar 

  19. Panpanit S, Visvanathan C (2001) J Membr Sci 184:59

    Article  CAS  Google Scholar 

  20. Inagaki M, Kawahara A, Nishi Y, Iwashita N (2002) Carbon 40:1487

    Article  CAS  Google Scholar 

  21. Gui XC, Li HB, Wang KL (2011) Acta Mater 59:4798

    Article  CAS  Google Scholar 

  22. Dong XC, Chen J, Ma YW, Wang J, Chan-Park MB, Liu XM, Wang LH, Huang W, Chen P (2012) Chem Commun 48:10660

    Article  CAS  Google Scholar 

  23. Andreeva N, Ishizakib T, Barochc P, Saito N (2012) Sens Actuators, A 164:15

    Article  CAS  Google Scholar 

  24. Wang D, McLaughlin E, Pfeffer R, Lin YS (2012) Sep Purif Technol 99:28

    Article  CAS  Google Scholar 

  25. Perdigoto ML, Martins RC, Rocha N, Quina MJ, Gando-Ferreira L, Patrício R, Durães L (2012) J Colloid Interface Sci 380:134

    Article  CAS  Google Scholar 

  26. Pichot R, Spyropoulos F, Norton IT (2012) J Colloid Interface Sci 377:396

    Article  CAS  Google Scholar 

  27. Gurav JL, Venkateswara RA, Nadargi DY, Park HH (2010) J Mater Sci 45:503. doi:10.1007/s10853-009-3968-8

    Article  CAS  Google Scholar 

  28. Rao AP, Rao AV (2010) J Mater Sci 45:51. doi:10.1007/s10853-009-3888-7

    Article  CAS  Google Scholar 

  29. Thu PTT, Thanh TT, Phi HN, Kim SJ, Vo V (2010) J Mater Sci 45:2952. doi:10.1007/s10853-010-4288-8

    Article  CAS  Google Scholar 

  30. Chao MC, Chang CH, Lin HP, Tang CY, Lin CY (2009) J Mater Sci 44:6453. doi:10.1007/s10853-009-3610-9

    Article  CAS  Google Scholar 

  31. Al-Oweini R, El-Rassy H (2009) J Mol Struct 919:140

    Article  CAS  Google Scholar 

  32. Li A, Sun H, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ (2011) Energ Environ Sci 4:206

    Google Scholar 

  33. Manca M, Cannavale A, Marco L, Arico AS, Cingolani R, Gigli G (2009) Langmuir 25:6357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Fan, H., Wang, Z. et al. Hydrophobic monolithic silica with abundant pore as efficient adsorbent for organic contaminants removal. J Mater Sci 48, 6713–6718 (2013). https://doi.org/10.1007/s10853-013-7472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7472-9

Keywords

Navigation