Skip to main content
Log in

Adiabatic heating and the saturation of grain refinement during SPD of metals and alloys: experimental assessment and computer modeling

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Severe plastic deformation methods include equal-channel angular pressing/extrusion, high-pressure torsion, and plane strain machining. These methods are extremely effective in producing bulk microstructure refinement and are generally initiated at a low homologous temperature. The resulting deformation-induced microstructures exhibit progressively refined cellular dislocation structures during the initial stages of straining that give way to refined, equiaxed grain structures at larger strains. Often, grain refinement appears to saturate but frequently coarsening is observed at the largest strains after a minimum in grain size is attained during SPD. Here, we summarize results on grain refinement by these processing methods and provide an analysis that incorporates adiabatic heating to explain the progressive refinement to intermediate strains and that may be followed either by an apparent saturation in grain refinement or by grain coarsening at the largest strains. This analysis is consistent with continuous dynamic recrystallization in the absence of the formation and long-range migration of high-angle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metal 1:99

    Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733

    Article  CAS  Google Scholar 

  5. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  6. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A 391:377

    Article  Google Scholar 

  7. Zhilyaev AP, Swisher DL, Oh-ishi K, Langdon TG, McNelley TR (2006) Mater Sci Eng A 429:137

    Article  Google Scholar 

  8. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  9. Bridgman PW (1943) J Appl Phys 14:273

    Article  Google Scholar 

  10. Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New York

    Google Scholar 

  11. Merchant ME (1945) J Appl Phys 16:267

    Article  Google Scholar 

  12. Edalati K, Horita Z (2011) Acta Mater 59:6831

    Article  CAS  Google Scholar 

  13. Kim HS (2009) Mater Sci Eng A 503:130

    Article  Google Scholar 

  14. Yamaguchi D, Horita Z, Nemoto M, Langdon TG (1999) Scripta Mater 41:791

    Article  CAS  Google Scholar 

  15. Zhilyaev AP, García-Infanta JM, Carreño F, Langdon TG, Ruano OA (2007) Scripta Mater 57:763

    Article  CAS  Google Scholar 

  16. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7

    Article  CAS  Google Scholar 

  17. Shaw MC (1984) Metal cutting principles. Oxford University Press, Clarendon

    Google Scholar 

  18. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  19. Polakowski NH, Ripling EJ (1966) Strength and structure of engineering materials. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Onaka S (2010) Phil Mag Let 90:633

    Article  CAS  Google Scholar 

  21. Brown TL, Swaminathan S, Chandrasekar S, Compton WD, King AH, Trumble KP (2002) J Mater Res 17:2484

    Article  CAS  Google Scholar 

  22. Swaminathan S, Shankar WD, Lee L, Hwang J, King AH, Kezar RF, Rao BC, Brown TL, Chandrasekar S, Compton WD, Trumble KP (2005) Mater Sci Eng A 410–411:358

    Google Scholar 

  23. Swaminathan S, Brown TL, Chandrasekar S, McNelley TR, Compton WD (2007) Scripta Mater 56:1047

    Article  CAS  Google Scholar 

  24. Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Trans A 33:2173

    Article  Google Scholar 

  25. Oh-ishi K, Zhilyaev AP, McNelley TR (2005) Mater Sci Eng A 410–411:183

    Google Scholar 

  26. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A 410–411:277

    Google Scholar 

  27. Zhilyaev AP, Swaminathan S, Raab GI, McNelley TR (2006) Scripta Mater 55:931

    Article  CAS  Google Scholar 

  28. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:10.1007/s10853-008-2624-z

    Article  CAS  Google Scholar 

  29. Zhilyaev AP, Swaminathan S, Gimazov AA, McNelley TR, Langdon TG (2008) J Mater Sci 43:7451. doi:10.1007/s10853-012-6429-8

    Article  CAS  Google Scholar 

  30. Korznikova EA, Mironov SY, Korznikov AV, Zhilyaev AP, Langdon TG (2012) Mater Sci Eng A 556:437

    Article  CAS  Google Scholar 

  31. Sherby OD, Burke PM (1967) Prog Mater Sci 13:325

    Google Scholar 

  32. Sherby OD, Wadsworth J (1984) Deformation processing and microstructure. ASM International, Materials Park

    Google Scholar 

  33. Vorhauer A, Pippan R (2008) Metall Mater Trans A 39:417

    Article  Google Scholar 

  34. Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Annu Rev Mater Res 40:319

    Article  CAS  Google Scholar 

  35. Hall EO (1951) Proc Phys Soc B 64:742

    Article  Google Scholar 

  36. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  37. Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955

    Article  CAS  Google Scholar 

  38. Eckert J, Holzer J, Krill C, Johnson W (1992) J Mater Res 7:1751

    Article  CAS  Google Scholar 

  39. Greer JR, Dongchan J, Gu XW (2012) J Metals 64:1241

    CAS  Google Scholar 

  40. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford

    Google Scholar 

  41. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753

    Article  CAS  Google Scholar 

  42. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  43. Zhilyaev AP, Kim B-K, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  44. Zhilyaev AP, Gimazov AA, Soshnikova EP, Révész A, Langdon TG (2008) Mater Sci Eng A 489:207

    Article  Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by the U.S. Air Force Office of Scientific Research (Contract F1ATA06058G001, 2006-09, B. Conner, Scientific Officer). SS acknowledges support under the U.S. National Research Council Postdoctoral Fellowship Program at the Naval Postgraduate School. TGL and APZ acknowledge support by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. McNelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilyaev, A.P., Swaminathan, S., Pshenichnyuk, A.I. et al. Adiabatic heating and the saturation of grain refinement during SPD of metals and alloys: experimental assessment and computer modeling. J Mater Sci 48, 4626–4636 (2013). https://doi.org/10.1007/s10853-013-7254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7254-4

Keywords

Navigation