Skip to main content
Log in

Thermoelectric properties of p-type semiconductors copper chromium disulfide CuCrS2+x

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of bulk samples CuCrS2+x (x = 0, 0.01, 0.02, 0.06, 0.10) were prepared by combining mechanical alloying and spark plasma sintering. The effect of excessive sulfur content on the phase structure, microstructure, and thermoelectric and optical properties was investigated. The excessive sulfur initially entered into the lattice sites and then into the lattice interstices. A direct band gap semiconductor for CuCrS2 material with an optical band gap of about 2.48 eV was proved. An improved electrical conductivity 2980 S m−1 at 673 K reached along with an inversely varied Seebeck coefficient as increasing x value, which showed a maximum power factor of 104 μ W m−1 K−2 at 673 K for CuCrS2.01 sample. In addition to the low thermal conductivity between 0.48 and 1.02 W m−1 K−1 in the whole temperature range, a peak ZT of 0.15 was achieved at 673 K for CuCrS2.01 bulk sample, which was 36 % higher than that (0.11) of the CuCrS2.00.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li JF, Liu WS, Zhao LD, Zhou M (2010) NPG Asia Mater 2:152

    Article  Google Scholar 

  2. Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727

    Article  CAS  Google Scholar 

  3. Yan X, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan YC, Wang DZ, Chen G, Ren ZF (2010) Nano Lett 10:3373

    Article  CAS  Google Scholar 

  4. Ge ZH, Zhang BP, Yu ZX (2011) J Mater Res 26:2711

    Article  CAS  Google Scholar 

  5. Liu Y, Zhao LD, Liu YC, Lan JL, Xu W, Li F, Zhang BP, Berardan D, Dragoe N, Lin YH, Nan CW, Li JF, Zhu H (2011) J Am Chem Soc 133:20112

    Article  CAS  Google Scholar 

  6. Li F, Li JF, Zhao LD, Xiang K, Liu Y, Zhang BP, Lin YH, Nan CW, Zhu HM (2012) Energy Environ Sci 5:7188

    Article  CAS  Google Scholar 

  7. Hahn H, de Lorent C (1957) Z Anorg Allg Chem 290:72

    Article  Google Scholar 

  8. Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV, Abdullin AR (2000) Phys Solid State 42:1508

    Article  Google Scholar 

  9. Tsujii N, Kitazawa H (2007) J Phys Condens Matter 19:145245

    Article  Google Scholar 

  10. Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV (1999) Phys Solid State 41:1327

    Article  Google Scholar 

  11. Abramova GM, Vorotynov AM, PetrakovskiÏ GA, Kiselev NI, Velikanov DA, Bovina AF, Al’mukhametov RF, Yakshibaev RA, Gabitov ÉV (2004) Phys Solid State 46:2225

    Article  CAS  Google Scholar 

  12. Singh K, Maignan A, Martin C, Simon Ch (2009) Chem Mater 21:5007

    Article  CAS  Google Scholar 

  13. Bongbrs IF, Van Bruggen CF, Koopstra J, Omloo WPFAM, Wiegers GA, Jellinek F (1968) J Phys Chem Solids 29:977

    Article  Google Scholar 

  14. Abramova G, Pankrats A, Petrakovskii G, Rasch JCE, Boehm M, Vorotynov A, Tugarinov V, Szumszak R, Bovina A, Vasil’ev V (2009) Phys Rev B 80:104431

    Article  Google Scholar 

  15. Le Nagard N, Collin G, Gorochov O (1979) Mater Res Bull 14:1411

    Article  Google Scholar 

  16. Boutbila My A, Rasneur J, EI AatmaniM, Lyahyaoui H (1996) J Alloys Compd 244:23

    Article  Google Scholar 

  17. Tewari GC, Tripathi TS, Rastogi AK (2010) J Electron Mater 39:1133

    Article  CAS  Google Scholar 

  18. Tewari GC, Tripathi TS, Kumar P, Rastogi AK, Pasha SK, Gupta G (2011) J Electron Mater 40:2368

    Article  CAS  Google Scholar 

  19. Gascoin F, Maignan A (2011) Chem Mater 23:2510

    Article  CAS  Google Scholar 

  20. Li JH, Tan Q, Li JF (2013) J Alloys Compd 551:143

    Article  CAS  Google Scholar 

  21. Chen YX, Zhang BP, Ge ZH, Shang PP (2012) J Solid State Chem 186:109

    Article  CAS  Google Scholar 

  22. Tsujii N, Kitazawa H, Kido G (2006) Phys State Solidi 3:2775

    Article  CAS  Google Scholar 

  23. Liu ML, Wang YM, Huang FQ, Chen LD, Wang WD (2007) Scr Mater 57:1133

    Article  CAS  Google Scholar 

  24. Ge ZH, Zhang BP, Shang PP, Yu YQ, Chen C, Li JF (2011) J Electron Mater 40:1087

    Article  CAS  Google Scholar 

  25. Ge ZH, Zhang BP, Liu Y, Li JF (2012) Phys Chem Chem Phys 14:4475

    Article  CAS  Google Scholar 

  26. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  27. Muthukumaran S, Gopalakrishnan R (2012) Physica B 407:3448

    Article  CAS  Google Scholar 

  28. Singh G, Shrivastava SB, Jain D, Pandya S, Shripathi T, Ganesan V (2010) Bull Mater Sci 33:581

    Article  CAS  Google Scholar 

  29. Wang SJ, Zhang BP, Yan LP, Deng W (2011) J Alloys Compd 509:5731

    Article  CAS  Google Scholar 

  30. Tewari GC, Tripathi TS, Rastogi AK (2010) Z Kristallogr 225:471

    Article  CAS  Google Scholar 

  31. Bouchard RJ, Russo PA, Wold A (1965) Inorg Chem 4:685

    Article  CAS  Google Scholar 

  32. Yakshibaevg RA, Akmanovar GR, Almukhametov RF, Konev VN (1991) Phys Status Solidi A 124:417

    Article  Google Scholar 

  33. Jeffrey Snyder G, Caillat T, Fleurial JP (2001) Mat Res Innovat 5:67

    Article  Google Scholar 

  34. Zhang ZH, Sharma PA, Lavernia EJ, Yang N (2011) J Mater Res 26:475

    Article  CAS  Google Scholar 

  35. Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Appl Phys Lett 93:193121

    Article  Google Scholar 

  36. Lee EK, Yin L, Lee YJ, Lee JW, Lee SJ, Lee J, Cha SN, Whang D, Hwang GS, Hippalgaonkar K, Majumdar A (2012) Nano Lett 12:2918

    Article  CAS  Google Scholar 

  37. Fan XA, Yang JY, Chen RG, Yun HS, Zhu W, Bao SQ, Duan XK (2006) J Phys D 39:740

    Article  CAS  Google Scholar 

  38. Hochbaum I, Chen R, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Nature 451:163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51272023), and High-Tech 973 Program of China (Grant No. 2013CB632503). We also appreciate the help provided by Prof. J.-F. Li’s laboratory in Tsinghua University for part TE property measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, CG., Zhang, BP., Ge, ZH. et al. Thermoelectric properties of p-type semiconductors copper chromium disulfide CuCrS2+x . J Mater Sci 48, 4081–4087 (2013). https://doi.org/10.1007/s10853-013-7220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7220-1

Keywords

Navigation